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Abstract
The ambiguity function (AF) is an essential time-frequency analysis tool to ana-
lyze the radar waveform properties in radar applications. It can be used effectively
and reliably to analyze properties like the peak-to-side-lobe ratio, time delay reso-
lution, Doppler resolution and tolerance characteristic. However, it fails to analyze
higher-order chirp waveforms and is unable to estimate their parameters. To solve
this problem, a generalized time-frequency transform-based generalized fractional AF
(GFAF) and generalized fractionalWigner–Ville distribution (GFWVD) are proposed.
GFAF is also a generalization of the Fourier transform-based ambiguity function and
the fractional Fourier transform-based ambiguity function. The uncertainty principle
for GFAF and GFWVD is derived. Examples are presented to demonstrate the effec-
tiveness of GFAF in analyzing cubic chirp waveforms and estimating parameters of
multicomponent cubic chirps. The superiority of GFAF is demonstrated by comparing
the mean square error to Cramer–Rao lower bound and high-order ambiguity function
under different input-signal-to-noise ratio conditions. The robustness is demonstrated
by comparing the signal-to-noise ratio gain to that of the time domain-matched fil-
tering and other ambiguity functions. Finally, fourth-order parameters of a real bat
echolocation signal are estimated.

Keywords Ambiguity function (AF) · Generalized time-frequency transform
(GTFT) · Generalized fractional ambiguity function (GFAF) · Generalized fractional
Wigner distribution function (GFWDF) · Time-frequency distribution (TFD) ·
Higher-order chirps
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1 Introduction

The ambiguity function (AF) is a crucial time-frequency analysis tool to estimate
signal parameters in radar applications. It can be used effectively and reliably to
analyze radar waveform properties like the peak-to-side-lobe ratio, time delay reso-
lution, Doppler resolution, and Doppler tolerance characteristic. In most of the radar,
sonar, and biomedical applications, a chirp signal is transmitted to hit a target, and
the reflected signal is received and estimated to know the characteristics of the radar
target. The reflected signals represent the characteristics of the target, and they are
higher-order chirps. Thus, there is a need to estimate the parameters of these received
signals [2,4,14,17,30,42].

Many transforms have been proposed to estimate parameters of higher-order
frequency-modulated signals based on computation complexity and parameter estima-
tion accuracy. Some linear transforms have been proposed to estimate the parameter
of higher-order chirps such as polynomial Fourier transform [14], local polynomial
Fourier transform [20], polynomial chirplet transform, generalized parametric time
frequency transform [50–52], generalized time-frequency transform [34–36], maxi-
mum likelihood estimator [5,13], quasi-maximum likelihood estimator (QML) [12],
and QMLwith reduced coarse search method [39]. All these higher-order linear trans-
forms give better parameter estimation accuracy, and they do not produce cross-terms
during multicomponent signal analysis. However, even though higher-order param-
eter estimation is possible, computational complexity increases drastically with the
increase in polynomial phase order.

Some nonlinear transforms have been proposed to reduce the computational com-
plexity to estimate the parameter of higher-order chirp signal such as cubic phase
function [13], linear canonical transform-based ambiguity function [7,48], linear
canonical transform-based Wigner Ville Distribution (WVD) [33,41], unified Wigner
ambiguity function [53,54], high-resolution time-frequency rate representation [56].
All these transforms are capable of estimating parameters with reduced computational
complexity as compared to higher-order linear transforms. However, they produce
cross-terms during multicomponent signal analysis. So, they are unable to give good
estimation accuracy in low signal-to-noise ratio (SNR) conditions. A newAF based on
LCTcalled generalizedLCT (GLCT) has been developed and shown to have better per-
formances in terms of SNR [40]. Sparse fractional ambiguity function further reduces
the computational complexity of fractional Fourier transform-based ambiguity func-
tion [23]. Similarly segmented sparse discrete polynomial phase transform [22,24]
and sparse cubic phase function-based methods [25] have been proposed to detect
chirp parameters in low SNR conditions. However, all these transforms are capable
of estimating parameters up to third-order polynomial phase signal only. These trans-
forms [22–25], along with the results obtained in this paper could be used to provide
a basis for generalizing these results to higher-order frequency-modulated signals.

Some higher-order nonlinear transforms have been proposed to estimate higher-
order chirp parameters (phase order ≥ 3) such as higher-order ambiguity function
(HAF) and polynomial WVD. These produce cross-terms during multicomponent
signal analysis due to the nonlinear nature of transform. Each correlation or phase
differentiation in HAF increases the SNR threshold by 6dB and degrades parameter
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estimation accuracy. To reduce cross-terms during multicomponent signal analysis,
product higher-order ambiguity function (PHAF) and integratedgeneralized ambiguity
function (IGAF), HAF-CPF have been proposed [4,38]. These higher-order nonlinear
transforms are capable of estimating parameter up to some higher order in low SNR
condition due to the use of multiple correlations. IGAF is accurate in the analysis of
polynomial phase signals, but it is computationally intensive [40]. Furthermore, these
higher-order nonlinear transforms can estimate only the polynomial phase signal.

The generalized time-frequency transform (GTFT) has been shown to analyze any
higher-order polynomial chirp signals [34–36]. In this paper, the GTFT-based GFAF
and GFWVD is proposed to analyze a large variety of multicomponent frequency-
modulated signalswith reduced computational complexity. GFAF follows the property
of index additivity of angle (similar to fractional Fourier transform (FrFT)-based AF).
Hence, GFAF is computationally efficient. GFAF can analyze a variety of signals
by appropriate selection of the parametric function in the GTFT kernel. Furthermore,
GFAFwith the appropriately selected kernel can be used to analyze or estimate param-
eters of hybrid sinusoidal frequency-modulated polynomial phase signals. GFAF
estimates cubic chirp parameters with reduced computational complexity because of
a single correlation. GFAF is capable of analyzing radar waveform properties; hence,
it is useful in radar applications. GFAF provides better SNR threshold as compared
to high-order ambiguity function (HAF), and other multi-lag phase differentiation
transforms due to the use of a single correlation. A combination of correlation and
higher-order GTFT kernel in GFAF can be used to analyze any higher-order chirp
with reasonable computational complexity. The computational complexity of GFAF
is lesser than generalized CPF, maximum likelihood, and QML estimator for esti-
mating higher-order chirp parameters. These properties make GFAF superior to other
transforms.

Parameter estimation of complex systems such as hydraulic systems as in [26] is a
difficult problem. For estimating higher-order chirps with more parameters, specific
meta-heuristic algorithms like the ones proposed in [27] and [44] can be explored to
estimate parameters with reduced computation complexity. The parameter estimation
done in this paper uses a nested linear search. However, due to a smaller number of
parameters considered in cubic chirps, both types of algorithms are feasible.

Many real-world noise patterns such as radar clutter, radar jamming, and interfer-
ence, atmospheric noise are non-Gaussian in nature. Many systems produce incorrect
results in the presence of non-Gaussian noise [18,19,43,45]. Sigmoid-based fractional
Fourier transform, sigmoid-based fractional Fourier ambiguity function, and sigmoid-
based fractional Fourier Wigner–Ville distribution have been proposed to overcome
the effect of impulse noise in parameter estimation of chirp signal. These sigmoid-
based transforms do not require any prior knowledge of impulse noise [18,19]. Similar
to sigmoid-based fractional Fourier-based ambiguity function and sigmoid-based
fractional Fourier transform, a sigmoid-based GFAF and sigmoid-based GFWVD
approach are proposed to reduce the effect of impulse noise on parameter estimation
of higher-order chirps.

The remaining part of the paper is organized in the following manner. In Sect. 2,
FrFT and GTFT are explained briefly along with some useful formulae. In Sect. 3,
GFAF, GFWVD, and their properties are proposed. Section 4 presents the derivations
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of the uncertainty principle for the GFAF andGFWVD. Section 5 presents the analysis
of a multicomponent cubic chirp waveform and its parameter estimation using GFAF,
along with its cross-term error analysis. In Sect. 6, the mathematical derivation and
simulation results of multicomponent cubic chirps for SNR gain, mean square error
(MSE), its comparison with other transforms are presented, and error propagation
analysis has been performed. In Sect. 7, phase parameters of real multicomponent bat
signal till fourth order of phase are estimated, and it is compared with the estimated
parameter of FrFT-based AF. In Sect. 8, sigmoid GFAF and sigmoid GWVD are
proposed for estimating higher-order chirp parameter in the presence of non-Gaussian
noise. Finally, conclusions are drawn and future work is outlined.

2 Preliminaries

2.1 Different Time-Frequency Transforms

2.1.1 Fractional Fourier Transform

The fractional Fourier transform (FrFT) is a generalization of the Fourier transform
(FT). It depends on the parameter α, which can be interpreted as an angle of rotation in
the time-frequency (TF) plane [1,6,29,37,47,49]. The FrFT of a signal x(t) is defined
as

Xα( f ) =
+∞∫

−∞
x(t) · Kα(t, f )dt, (1)

where the kernel Kα(t, f ) of FrFT is given by [15]

Kα(t, f ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
√
1 − icotα) · exp

(
iπ t20 f 2cotα + iπ f 20 t

2cotα

−i2π f tcosecα

)
, if α is not a multiple of π

δ( f0t − t0 f ), if α is a multiple of 2π

δ( f0t + t0 f ), if α + π is a multiple of 2π

where t0, f0 are dimensional normalization factors, t20 = Tmax
fs

, f 20 = fs
Tmax

, t20 f 20 = 1,
Tmax is the window length during FrFT and fs is the sampling frequency. The unit of
t0 is second and f0 is Hz.

It should be noted that at α = π
2 , Kα becomes the kernel of the Fourier transform,

and hence, the FrFT of the signal becomes the Fourier transform of the signal. The
FrFT is a linear transform, so it does not produce cross-terms during multicomponent
signal analysis.

2.1.2 Generalized Time-Frequency Transform

If a signal x(t) has a finite absolute sum (finite L1 norm), then its generalized time-
frequency transform (GTFT) evaluated at parameters (α, λ) is given by
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Xα,λ( f ) =
+∞∫

−∞
x(t) · Kα,λ(t, f )dt, (2)

where Kα,λ(t, f ) is the kernel of GTFT and it is defined as [34–36]

Kα,λ(t, f ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

√
1 − icotα · exp

(
iπ t20 f 2cotα + iπ f 20 t

2cotα

−i2π f tcosecα + i · h(λ, t0 f ) − i · h(λ, f0t)

)
, if α is not a multiple of π

δ( f0t − t0 f ), if α is a multiple of 2π

δ( f0t + t0 f ), if α + π is a multiple of 2π

where h(·) is a real-valued dimensionless function, α, λ are the real-valued GTFT
parameters and t0, f0 are dimensional normalization factors, t20 = Tmax

fs
, f 20 = fs

Tmax
,

t20 f 20 = 1, Tmax is the window length during GTFT and fs is the sampling frequency.
The unit of t0 is second and unit of f0 is Hz.

One speciality of the GTFT kernel is that it follows the property of index additivity
of angle [36], i.e.,

∞∫

−∞
Kα1,λ(t, f )Kα2,λ( f , u)d f = K(α1+α2),λ(t, u). (3)

The inverse GTFT is defined as [35]

x(t) =
∞∫

−∞
Xα,λ( f ) · K ∗

α,λ(t, f )d f . (4)

The GTFT can be used to analyze a much wider variety of frequency-modulated
signals by varying h(·) in the GTFT kernel. Cubic-kernel-GTFT (ck-GTFT) is defined
by substituting the parametric function h(·) as

h(λ, z) = πλz3. (5)

It is to be noted that ck-GTFT is similar to the third-order polynomial Fourier transform
(PFT) [14], with the added advantage of possessing the property of index additivity
of angle.

Sinusoidal-kernel-GTFT is defined by substituting a multiparametric function h(·)
as

h(A, φ, λ, z) = A sin (πλz + φ) , (6)

where A, φ, and λ are the variable parameters, which can be tuned to match the
kernel with signal for estimating parameters. This can be a useful transform to analyze
certain micro-Doppler effects in radar for the classification of rotating and vibrating
targets [8,9].
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2.2 Ambiguity Function and Its Variants

– Ambiguity function
For a given signal x(t), the classical AF is defined as

Ax (τ, ω) =
∞∫

−∞
x
(
t + τ

2

)
x∗ (t − τ

2

)
e−iωtdt . (7)

If X(ω) is the FT of x(t), then the AF is also defined as

AX (v, τ ) =
∞∫

−∞
X
(
ω + v

2

)
X∗ (ω − v

2

)
eiωτdω. (8)

– Wigner–Ville distribution
For a given signal x(t), the Wigner–Ville distribution (WVD) is defined as

Wx (t, ω) =
∞∫

−∞
x
(
t + τ

2

)
x∗ (t − τ

2

)
e−iωτdτ. (9)

– Relation between AF and WVD
The WVD can be expressed in terms of AF as

Wx (t, ω) = 1

2π

∞∫

−∞

∞∫

−∞
Ax (τ, v)e−i(ωτ−vt)dvdτ. (10)

– Fractional Fourier transform or linear canonical transform-based ambiguity
function
Fractional Fourier transform or linear canonical transform (LCT)-based ambiguity
function AFA

x (τ, f ), of signal x(t) is defined as [7,10,31,48]

AFA
x (τ, f ) =

∞∫

−∞
x
(
t + τ

2

)
y∗ (t − τ

2

)
Kα(t, f )dt . (11)

Similarly, the WVD based on LCT WV DA
x (t, f ) of signal x(t) is defined as [33]

WV DA
x (t, f ) =

∞∫

−∞
x
(
t + τ

2

)
x∗ (t − τ

2

)
Kα(t, f )dτ, (12)

Author's personal copy



Circuits, Systems, and Signal Processing

where Kα(t, f ) is FrFT kernel and it is a special case of LCT kernel. LCT kernel
is defined as follows:

KA(t, f ) = 1√
i2πb

exp

(
i
d

2b
f 2 − i

f t

b
+ i

a

2b
t2
)

.

2.3 Useful Formulae

2.3.1 Gaussian Integral

+∞∫

−∞
e−At2±2Bt+Cdt =

√
π

A
e

B2
A +C , (13)

where A, B, C ∈ C , A �= 0, and Re(A) ≥ 0 [47].

2.3.2 Principle of Stationary Phase

The principle of stationary phase (PSP) is used to obtain an approximate closed-form
expression for the integral of a function whose amplitude A(t) varies very slowly
in comparison to the phase φ(t). Over the interval where the phase varies rapidly
compared to amplitude, the contribution to the integral is negligible because positive
and negative parts of the phase cancel each other. Hence, the nonzero contribution
comes mainly from the stationary phase point ‘t0’ [42] which implies

+∞∫

−∞
A(t) · eiφ(t) · dt ≈

√
2π

φ′′(t0)
· A(t0)e

iφ(t0) · e iπ
4 , (14)

where φ′′(t) is second derivative of the phase function φ(t) and ‘t0’ is the point where
derivative of the phase function becomes equal to 0 (φ′(t0) = 0). At this point, phase
of the signal φ(t) is considered to be ‘stationary.’ If t0, t1 . . . tn are the solutions of
φ′(t) = 0, then the integral can be approximated as

+∞∫

−∞
A(t) · eiφ(t) · dt ≈

n∑
k=0

√
2π

φ′′(tk)
· A(tk)e

iφ(tk ) · e iπ
4 . (15)

This stationary phase approximation is accurate for high time-bandwidth prod-
ucts [11]. If a0 is the coefficient of t in the phase function φ(t), then PSP is valid
for |a0| >> 0.
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3 Proposed Definitions

3.1 Generalized Fractional Ambiguity Function and Generalized Fractional
Wigner–Ville Distribution

All the above-stated algorithms can only estimate parameters of the chirp signals
by compromising in computation complexity or parameter estimation accuracy and
capable of analyzing only polynomial phase signals. However, in the synthetic aperture
radar system during imaging of moving targets, ground-based radar, and sonar system,
the reflected waveforms are required to be modeled as chirp signals with higher-order
polynomial phase [2,4,14,17,30,42]. Therefore, a new kind of AF associated with
GTFT called generalized fractional ambiguity function (GFAF) has been introduced.

For a given signal x(t) with finite L2 norm:

– The proposed GFAF associated with GTFT is defined as

AFGx(t),α,λ(τ, f ) =
∞∫

−∞
x(t + τ/2)x∗(t − τ/2)Kα,λ(t, f )dt . (16)

– The proposed generalized fractional Wigner–Ville distribution (GFWVD) associ-
ated with GTFT is defined as

WDFG
x(t),α,λ(t, f ) =

∞∫

−∞
x(t + τ/2)x∗(t − τ/2)Kα,λ(τ, f )dτ. (17)

Here Kα,λ(t, f ) is the kernel of GTFT. Cubic-kernel-GFAF (ck-GFAF) is defined
as cubic-kernel-GTFT (ck-GTFT)-based ambiguity function. Similarly, cubic-kernel-
GFWVD (ck-GFWVD) is defined as ck-GTFT-based WVD.

For two given signals x(t) and y(t) with finite L2 norm:

– The proposed cross GFAF associated with GTFT is defined as

AFGx(t),y(t),α,λ(τ, f ) =
∞∫

−∞
x(t + τ/2)y∗(t − τ/2)Kα,λ(t, f )dt . (18)

– The proposed cross GFWVD associated with GTFT is defined as

WDFG
x(t),y(t),α,λ(t, f ) =

∞∫

−∞
x(t + τ/2)y∗(t − τ/2)Kα,λ(τ, f )dτ. (19)

GFAF can perform waveform analysis and parameter estimation of a variety of sig-
nals (polynomial, sinusoidal frequencymodulated, etc.) by appropriate selection of the
parametric function h(·) in the GTFT kernel. For example, GFAF can use polynomial

Author's personal copy



Circuits, Systems, and Signal Processing

phase GTFT kernel to analyze multicomponent polynomial phase signals. Cubic-
kernel-GFAF (ck-GFAF) may be defined by using cubic-kernel GTFT to analyze
multicomponent cubic frequency-modulated signals. On the other hand, GFAF can use
sinusoidal-kernel GTFT to analyze multicomponent sinusoidal frequency-modulated
phase signals. Furthermore,GFAFwith the appropriately selected kernel can be used to
analyze or estimate parameters of hybrid sinusoidal frequency-modulated polynomial
phase signals. Similarly, parametric function h(·) of GTFT kernel can be appropriately
selected for analyzing other types of signals.

3.2 Relation Between GFAF and GFWVD

From the definition of the GFAF and inverse transform property of GTFT, we have

x(t + τ/2)x∗(t − τ/2) =
∞∫

−∞
AFGx(t),α,λ(τ, f )K ∗

α,λ(t, f )d f . (20)

Hence, from the definition of GFWVD, we get

WDFG
x(t),α,λ(t, f ′) =

∞∫∫

−∞
AFGx(t),α,λ(τ, f )K ∗

α,λ(t, f )Kα,λ(τ, f ′)dτd f , (21)

where Kα,λ is the GTFT kernel.

3.3 Properties of Generalized Fractional Ambiguity Function

3.3.1 Relation with Other Ambiguity Functions

– If h(·) = 0, then the GTFT kernel reduces to the fractional Fourier transform
kernel, and therefore, the GFAF reduces to FrFT-based AF, and it is not linear.

– If α = 90◦, h(·) = 0, then the GTFT kernel reduces to the Fourier transform
kernel, and therefore, the GFAF reduces to classical AF, and it is not linear.

3.3.2 Inverse and Uniqueness Property of GFAF

If x(t) has finite and nonzero L2 norm, then there exists an a such that x(a) �= 0.
Additionally if the AFGx(t),α,λ(τ, f ) has finite L1 norm, we can define the unique
inverse for GFAF as follows

x(t) = 1

x∗(a)

∞∫

−∞
AFGx(t),α,λ(t − a, f )K ∗

α,λ((t + a)/2, f )d f . (22)
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Proof We know that

x(t + τ/2)x∗(t − τ/2) =
∞∫

−∞
AFGx(t),α,λ(τ, f )K ∗

α,λ(t, f )d f . (23)

Let τ/2 = t − a, then Eq. (23) can be written as

x(2t − a)x∗(a) =
∞∫

−∞
AFGx(t),α,λ(2(t − a), f )K ∗

α,λ(t, f )d f . (24)

Now, substitute t = t+a
2 , thus we get

x(t) = 1

x∗(a)

∞∫

−∞
AFGx(t),α,λ(t − a, f )K ∗

α,λ

(
t + a

2
, f

)
d f . (25)

Hence from Eq. (25), it is easy to see that for any nonzero x(a), the inverse is unique
for particular x(t).

Also noteworthy is the case for a = 0, the form we obtain for the inverse in this
case is

x(t) = 1

x∗(0)

∞∫

−∞
AFGx(t),α,λ(t, f )K ∗

α,λ(t/2, f )d f . (26)

��

3.3.3 Nonlinearity and Cross-terms

If multicomponent signal z(t) is the sum of two monocomponent signals x(t) and
y(t), respectively (z(t) = x(t) + y(t)), then GFAF of z(t) can be expressed as:

AFGz(t),α,λ(τ, f ) = AFGx(t),α,λ(τ, f ) + AFGy(t),α,λ(τ, f )

+ AFGx(t),y(t),α,λ(τ, f ) + AFGy(t),x(t),α,λ(τ, f ). (27)

Here, asGFAF is a nonlinear transform,we can see that it produced cross-terms such as
AFGx(t),y(t),α,λ(τ, f ) and AFGy(t),x(t),α,λ(τ, f ) during multicomponent signal analysis.
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3.3.4 Total Energy Bound

Suppose that x(t) has finite and nonzero L2 norm, then we have

|AFGx(t),α,λ(τ, f )| ≤ |√cosecα|
∞∫

−∞
|x(t)|2dt . (28)

So, the maximum value of GFAF is bounded by energy or L2 norm of signal and frac-
tional Fourier angle. This property can be proved using theCauchy Schwarz inequality.

3.3.5 Total Energy Invariant Property

If α = 90◦ and λ = 0, then GFAF gives the energy of signal x(t) at origin, i.e.,

AFGx(t),α= π
2 λ=0,(0, 0) =

∞∫

−∞
|x(t)|2dt . (29)

3.3.6 Finite Time Delay Support Property

If x(t) is zero for all t /∈ [t1, t2], then AFGx(t),α,λ(τ, f ) is zero for all τ > t2 − t1.

3.3.7 Symmetry and Conjugation Properties

The following properties can be proved:

Symmetry properties:

– AFGx(t),α,λ(−τ, f ) =
[
AFGx(t),−α,−λ(τ, f )

]∗
, if h(λ, ·) is an odd function of λ.

– AFGx(t),α,λ(−τ,− f ) =
[
AFGx(t),−α,−λ(τ,− f )

]∗
, if h(λ, ·) is an odd function of λ.

Conjugation Properties:

– AFGx∗(t),α,λ(τ, f ) =
[
AFGx(t),−α,−λ(τ, f )

]∗
, if h(λ, ·) is an odd function of λ.

– AFGx(−t),α,λ(τ, f ) =

⎧⎪⎪⎨
⎪⎪⎩

AFGx(t),α,λ(τ,− f ), if h(λ, ·) is an even function of t, f .

AFGx(t),α,−λ(τ,− f ), if h(·, · is an odd function of t, f

and λ.
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– AFGx∗(−t),α,λ
(τ, f ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
AFGx(t),−α,−λ

(τ, − f )
]∗

, if h(·, ·) is an even function of t

and f and an odd function of λ.

[
AFGx(t),−α,λ

(τ, − f )
]∗

, if h(·, ·) is an odd function of t,

f and λ.

In particular, these properties are useful for ck-GFAF because for ck-GFAF, the GTFT
kernel is an odd function of λ.

3.3.8 Time Delay Property

If ck-GFAF of x(t) is AFGx(t),β,λ(τ, f ), then ck-GFAF of time delayed signal x1(t) =
x(t − td) is given by

AFGx1(t),α,λ(τ, f ) = C0( f , α, λ, td ) · AFGx(t),β,λ

(
τ, f ′) , (30)

where

cotβ = cotα − 3λ f0td , f ′ = f cosecα − f 20 tdcotα + 3
2λ f 30 t

2
d

cosecβ
and

C0( f , α, λ, td) =
√
1 − icotα√
1 − icotβ

· exp
(
iπ

[
−λt30 f ′3 − t20 f ′2cotβ + t20 f 2cotα

+ f 20 t
2
d cotα − 2 f tdcosecα − λ f 30 t

3
d + λt30 f 3

])
.

If λ = 0 , then we can get a relationship equivalent to the time delay property of
FrFT-based ambiguity function

AFGx1(t),α,λ=0(τ, f ) = AFGx(t),α(τ, f − f 20 tdcosα) (31)

exp
(
iπ

[
f 20 t

2
d cosα sin α − 2 f tdsinα

])
, (32)

where AFx(t),α is the ambiguity function in FrFT domain. Thus, a delay in time
translates to the ambiguity function with a changed frequency.

3.3.9 Frequency Delay Property

If GFAF of x(t) is AFGx(t),α,λ(τ, f ), then GFAF of the frequency-modulated signal

x1(t) = x(t)eiωdt is given by

AFGx1(t),α,λ(τ, f ) = eiωdτAFGx(t),α,λ(τ, f ). (33)

If λ = 0 in Eq. (33), then we will get a relationship similar to that of a FrFT-based AF.

AFGx1(t),α,λ=0(τ, f ) = AFx(t),α(τ, f )eiωdτ ,

where AFx(t),α is the ambiguity function in FrFT domain.
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3.3.10 Time Scaling Property

If ck-GFAF of x(t) is AFGx(t),β,λ(τ, f ), then ck-GFAF of x1(t) = √
ax(at) is given

by

AFG
x1(t),α,λ(τ, f ) = C0( f , α, λ, a) · AFGx(t),β,λ

(
aτ,

f ′

a

)
, (34)

where cotβ = cotα
a2

, f ′ = f cosecα
cosecβ , γ1 = λ

a3
and

C0( f , α, λ, a) =
√
1 − icotα√
1 − icotβ

· exp
(
iπ

(
γ1t30 f ′3

a3

[
a6

(
cosecβ

cosecα

)3

− 1

]

+
(
t0 f ′

a

)2
[
a2

(
cosecβ

cosecα

)2

· cotα − cotβ

]))
.

If λ = 0 in Eq. (34), then we get a relationship like that of a FrFT-based ambiguity
Function

AFGx1(t),α,λ=0(τ, f ) =
√
1 − icotα√
1 − icotβ

· exp
(
iπ

(
t0 f

′
a

)2
[
a2

(
cosecβ

cosecα

)2
cotα − cotβ

])

AFx(t),β

(
aτ,

f ′
a

)
,

where AFx(t),β(τ, f ′) is fractional Fourier transform-based ambiguity function at
angle β of signal x(t).

3.3.11 Generalized Fractional Ambiguity Function in Terms of GTFT of Signal x(t)

If ck-GFAF of x(t) is AFGx(t),α,λ(τ, f ), then ck-GFAF in terms of GTFT is given by

AFGx(t),α,λ(τ, f ) = 1√
1 − icotβ

∞∫

−∞
Xα,λ( f1)X

∗
β( f ′)K ∗

α,λ(τ, f1)

Kα,λ(τ/2, f ) · eiπ t20 f ′2cotβd f1, (35)

where 3 f0λτ
2 = −cotβ and f ′ = −1

cosecβ

[
f 20 τ

2 cotα − f1cosecα + f cosecα − 9λ f 30 τ 2

8

]
,

and Xβ( f ′) is the FrFT of x(t) at angle β.
If λ = 0 then β = π

2 so the GFAF becomes the ambiguity function in fractional
Fourier domain.

AFGx(t),α,λ=0(τ, f ) =
∞∫

−∞
Xα,λ=0( f1)X

∗
π
2

(
− f 20 τ

2
cotα + f1cosecα − f cosecα

)

· K ∗
α,λ=0(τ, f1) · Kα,λ=0(τ/2, f )d f1.
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3.3.12 Relationship of Generalized Fractional Ambiguity Function with STFrFT

If ck-GFAF of x(t) is AFGx(t),α,λ(τ, f ), then ck-GFAF is related to short time FrFT is
given by

AFGx(t),α,λ(τ, f ) = C0(τ, f , α, λ) · Xg
β(τ, f ′),

where Xg
β(τ, f ′) is STFrFT at angle β with window function

g(t) = x(t) · exp(iπλ f 30 t
3), f ′ = 1

cosecβ
·
[
f cosecα − 9λ f 30 τ 2

8
+ f 20 τcotα

2

]
and

C0(τ, f , α, λ) =
√
1 − icotα√
1 − icotβ

· exp
(
iπ

[
τ 2. f 20 cotα

4
+ t20 f 2cotα + f τcosecα

+λt30 f 3 − 7λ f 30 τ 3

8

])
.

If λ = 0, then we get the relation of fractional Fourier-based AF with short time
Fourier transform (STFT).

AFGx(t),α,λ=0(τ, f ) = C1(τ, f , α) · Xg1
π
2

(
τ,−τ f 20 cotα

2
+ f cosecα

)
,

where Xg1
π
2

(
τ,− τ f 20 cotα

2 + f cosecα

)
is STFT at angle π/2 with window function

g1(t, α) = x(t) · exp
(
−iπ t2 f 20 cotα

)
,

C1(τ, f , α) = √
1 − icotα · exp

(
iπ

[
−3τ 2 f 20 cotα

4
+ t20 f 2cotα + f τcosecα

])
.

3.3.13 Moyal Property

∞∫∫

−∞
AFGx(t),α,λ(τ, f ) ·

[
AFGy(t),α,λ(τ, f )

]∗
dτd f =

∣∣∣∣∣∣
∞∫

−∞
x(u)y∗(u)du

∣∣∣∣∣∣
2

(36)

= |< x · y >|2 , (37)

where < x · y > is the standard inner product of the functions x(·) and y(·). GFAF
follows total energy property and total energy of GFAF is equal to total energy of
signal. Thus, the inner product of the two AFs can be found conveniently by using the
value of inner product of the signals.
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3.3.14 Multiplication Property

If signals x(t) and y(t) have respective ck-GFAFs AFGx(t),α,λ(τ, f1) and AFGy(t),α,λ

(τ, f1), then a signal z(t) = x(t) · y(t) has an ck-GFAF AFGz(t),α,λ(τ, f ) given by

AFGz(t),α,λ(τ, f ) = |cosecα|
∞∫

−∞
AFx(t),α,λ(τ, f1).AFy(t), π

2
(τ, ( f − f1)cosecα)

· exp
(
iπ

[
t20 cotα( f 2 − f 21 ) + λt30 ( f 3 − f 31 )

])
d f1. (38)

where AFy(t), π
2
(τ, ( f − f1)cosecα) =

∞∫
−∞

y(t + τ
2 )y∗(t − τ

2 )e−i2π tcosecα( f − f1)dt ,

is Fourier transform-based ambiguity function. Thus, the ambiguity function of the
multiplication of two signals, such as z(t) can be computed in a convenient way by
using the ambiguity functions of x(t) and y(t).

If λ = 0 and α = 90◦, Eq. (38) reduces to FFT-based ambiguity function

AFGz(t),α= π
2 ,λ=0(τ, f ) = AFx(t), π

2
(τ, f ) ∗ f AFy(t), π

2
(τ, f ), (39)

where ∗ f is convolution over f .

3.3.15 TimeMarginal Property

The time marginal property of the GFAF can be expressed by

AFGx(t),α,λ(0, f ) =
∞∫

−∞
|x(t)|2Kα,λ(t, f )dt . (40)

3.3.16 Frequency Marginality Property

The frequency marginal property of the GFAF can be expressed by

AFGx(t),α,λ(τ, 0) =
∞∫

−∞
x(t + τ/2)x∗(t − τ/2)Kα,λ(t, 0)dt . (41)
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3.3.17 Cubic Phase Shift Property

The cubic kernel cross-generalized fractional ambiguity function of x(t) and y(t) is
AFGx(t),y(t),α,λ(τ, f ), and it is defined as follows:

AFGx(t),y(t),α,λ(τ, f ) =
∞∫

−∞
x
(
t + τ

2

)
y∗ (t − τ

2

)
Kα,λ(t, f )dt .

If y(t) = x(t) · exp (iπ [a3t3 + a2t2 + a1t]
)
, then assuming a3 = − f 30 λ and 3a3τ

2 +
a2 = f 20 cotα, AF

G
x(t),y(t),α,λ(τ, f ) is given by

AFGx(t),y(t),α,λ(τ, f ) = c0(τ, f , α, λ) ·AFx(t), π
2

(
τ, f cosecα + a1

2
+ 3τ 2a3

8
− a2τ

2

)
,

(42)
where AFx(t), π

2
(τ, f ) is the Fourier transform-based ambiguity function and

c0(τ, f , α, λ) = √
1 − icotα ·exp

(
iπ

[−a3τ 3

8 − a2τ 2

4 + a1τ
2 + λt30 f 3 + t20 f 2cotα

])
.

3.3.18 Property of Index Additivity of Angle for GFAF

Since GFAF follows the property of index additivity of angle, it is computationally
efficient, i.e.,

AFGx(t),α+β,λ(τ, u) =
+∞∫

−∞
AFGx(t),α,λ(τ, f )Kβ,λ( f , u)d f . (43)

3.3.19 Computational Complexity of Digital GFAF

GFAF is the GTFT of the autocorrelation of a signal. The computational require-
ment of the GTFT for an N length quadratic chirp signal is O(N log2 N ). With
the correlation of the signal added, the digital computational complexity of GFAF
becomes O(N 2 log2 N ) [5,12,16,40]. Comparison of the computational complexity
of different higher-order transform are shown in Table 1. As shown in Table 1, the
computational complexity of GFAF is lesser than generalized cubic phase function
(GCPF), maximum likelihood (ML), and QML estimator for estimating higher-order
chirp parameters.
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Table 1 Comparison of computational complexity of different higher-order transform

Higher-order
transform

GFAF ML HAF GCPF Hybrid
CPF-HAF

QML

Computational
complexity

O(N2 log2 N ) O(N P+1) O(PN log2 N ) O(N3) O(N2) O(N3)

4 Uncertainty Principle for GFAF

Consider a unit energy signal x(t) and its GTFT as Xα,λ(·). Let τmean be mean time
and fmean be mean frequency of x(t).

∞∫

−∞
|x(τ )|2dτ = 1 and

∞∫

−∞
|Xα,λ( f )|2d f = 1,

∞∫

−∞
τ |x(τ )|2dτ = τmean and

∞∫

−∞
f |Xα,λ( f )|2d f = fmean.

Now, consider time variance of GFAF is σ 2
tGFAF

given by:

σ 2
tGFAF =

∞∫∫

−∞
(τ − τmean)

2|AFGx(t),α,λ(τ, f )|2dτd f ,

=
∫ ∞

−∞
(τ − τmean)

2
∫ ∞

−∞

∫ ∞

−∞
x(t + τ/2)x∗(t − τ/2)

x∗(t ′ + τ/2)x(t ′ − τ/2).

[∫ ∞

−∞
Kα,λ(t, f )∗Kα,λ(t

′, f )d f

]
dtdt ′dτ,

=
∞∫∫

−∞
(τ − τmean)

2|x(t + τ/2)|2|x(t − τ/2)|2dτdt . (44)

Put t + τ/2 = m, and t − τ/2 = n. If x(t) is real and zero mean, then τmean = 0.
Hence, the time-variance is given by:

σ 2
tGFAF =

∞∫∫

−∞
(m − n)2|x(m)|2|x(n)|2dmdn = 2

∞∫

−∞
m2|x(m)|2dm. (45)
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Now consider frequency variance of GFAF is σ 2
fGFAF

σ 2
fGFAF =

∞∫∫

−∞
( f − fmean)

2|AFGXα,λ(u),α,λ( f , τ )|2dτd f

=
∫ ∞

−∞
( f − fmean)

2
∫ ∞

−∞
Xα,λ(u + f /2)X∗

α,λ(u− f /2)
∫ ∞

−∞
X∗

α,λ(u
′+ f /2)

Xα,λ(u
′ − f /2).

[∫ ∞

−∞
Kα,λ(u, τ )∗Kα,λ(u

′, τ )dτ

]
dudu′d f

=
∞∫∫

−∞
( f − fmean)

2|Xα,λ(u + f /2)|2|Xα,λ(u − f /2)|2dud f . (46)

Put u + f /2 = w, and u − f /2 = v, If x(t) is real and zero mean, then fmean = 0.
Hence, the frequency-variance is given

σ 2
fGFAF

=
∞∫∫

−∞
(w − v)2|Xα,λ(w)|2|Xα,λ(v)|2dwdv = 2

∞∫

−∞
w2|Xα,λ(w)|2dw.

(47)

From Eqs. (45) and (47), square of time bandwidth product (TBP) can be written as:

σ 2
tGFAFσ

2
fGFAF = 4

∞∫

−∞
m2|x(m)|2dm

∞∫

−∞
w2|Xα,λ(w)|2dw = 4 · σ 2

tGTFTσ
2
fGTFT ,

where σ 2
tGTFT is time variance and σ 2

fGTFT
is frequency variance of GFAF, and their

product is always greater than or equal to sin2 α/4 [36], i.e.,

σ 2
tGFAF · σ 2

fGFAF ≥ 4 · sin
2 α

4
∴ σtGFAF · σfGFAF ≥ | sin α|. (48)

Similarly,we can also derive the uncertainty principle orTBP for generalized fractional
Wigner–Ville distribution:

σtGFWVD · σfGFWVD ≥ | sin α|
4

, (49)

where σ 2
tGFWVD

is time variance and σ 2
fGFWVD

is frequency variance of GFWVD.
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5 Pulsed Cubic ChirpWaveform Analysis Using ck-GFAF

5.1 Mathematical Derivation of Pulsed Cubic ChirpWaveform Analysis Using
ck-GFAF

5.1.1 Unmatched Case

Consider a signal

x(t) = A · rect
(
t

T

)
· exp

[
iπ

(
a1t + a2t

2 + a3t
3 + a4t

4
)]

, (50)

where

rect

(
t

T

)
=

{
1, − T

2 ≤ t ≤ T
2 ,

0, otherwise.

Then its instantaneous correlation becomes

x(t + τ/2)x∗(t − τ/2) = |A|2 · rect
(

t

T − |τ |
)

· exp
[
iπ

(
4a4τ t

3 + 3a3τ t
2 + (2a2τ + a4τ

3)t + a1τ + a3τ 3

4

)]
.

Consider the ck-GTFT kernel given by Eq. (5) with h(λ, t0 f ) = iπλ(t0 f )3 and
h(λ, f0t) = iπλ( f0t)3 to be

Kα,λ(t, f ) = √
1 − i .cotα · exp

[
iπ

(
t20 f 2cotα + f 20 t

2cotα − 2 f tcosecα

+λ(t0 f )
3 − λ( f0t)

3
)]

. (51)

Then, by the applying the PSP approximation, GFAF of the signal x(t) becomes

∣∣∣AFGx(t),α,λ(τ, f )
∣∣∣ ≈

∣∣∣∣∣∣∣∣

√√√√√
|A|2cosecα√(

3a3τ + f 20 cotα
)2 − 6

(
4a4τ − f 30 λ

) (
a2τ + a4τ3

2 − f cosecα
)

·
(
eiφ20 · rect

(
t1

T − |τ |
)

+ ie−iφ20 · rect
(

t2
T − |τ |

))∣∣∣∣ ,

where

t1,2 = −a′

3c′︸︷︷︸
α0

±
√
a′2 − 6c′ f ′

3c′︸ ︷︷ ︸
β0

,
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φ20 = π
[
c′(β3

0 + 3β0α
2
0) + 2a′α0β0 + 2 f ′β0

]
,

α0 = −a′

3c′ , β0 =
√
a′2 − 6c′ f ′

3c′ , c′ = 4a4τ − f 30 λ,

a′ = 3a3τ + f 20 cotα, f ′ = a2τ + a4τ 3

2
− f cosecα. (52)

5.1.2 Cubic Phase-Matched Case

If 4a4τ = f 30 λ and 3a3τ �= − f 20 cotα, then

AFGx(t),α,λ(τ, f ) =|A|2√1 − icotα

∞∫

−∞
rect

(
t

T−|τ |
)

· exp
[
iπ

(
(3a3τ + f 20 cotα)t2

+ (2a2τ + a4τ
3 − 2 f cosecα)t + t20 f 2cotα

+λ(t0 f )
3+a1τ + a3τ 3

4

)]
dt .

Let C0(τ, f , α) = 2a2τ + a4τ 3 − 2 f cosecα and C1(τ, α) = 3a3τ + f 20 cotα, then
we get:

∣∣∣AFGx(t),α,λ(τ, f )
∣∣∣=|A|2√cosecα

∣∣∣∣∣∣
∞∫

−∞
rect

(
t

T−|τ |
)

· exp
[
iπ

(
C1t

2 + C0t
)]

dt

∣∣∣∣∣∣ .

Applying PSP approximation,

∣∣∣AFGx(t),α,λ(τ, f )
∣∣∣ ≈ |A|2

√
cosecα

C1
, −T − |τ |

2
≤ − C0

2C1
≤ T − |τ |

2
. (53)

5.1.3 Cubic and Quadratic Phase-Matched Case

If 4a4τ = f 30 λ, 3a3τ = − f 20 cotα and 2a2τ + a4τ 3 �= 2 f cosecα, then

AFGx(t),α,λ(τ, f )=|A|2√1 − icotα

∞∫

−∞
rect

(
t

T−|τ |
)
exp

[
iπ

(
t20 f 2cotα+λ(t0 f )

3

+ (2a2τ + a4τ
3 − 2 f cosecα)t + a1τ + a3τ 3

4

)]
dt .

∣∣∣AFGx(t),α,λ(τ, f )
∣∣∣ = |A|2√cosecα

∫ T−|τ |
2

− T−|τ |
2

exp[iπ(2a2τ + a4τ
3 − 2 f cosecα)t]dt .

∣∣∣AFGx(t),α,λ(τ, f )
∣∣∣ = |A|2√cosecα ·

exp
[
iπC0(T−|τ |)

2

]
− exp

[
− iπC0(T−|τ |)

2

]

iπC0
,
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where C0(τ, f , α) = 2a2τ + a4τ 3 − 2 f cosecα.

∣∣∣AFGx(t),α,λ(τ, f )
∣∣∣ = 2|A|2√cosecα ·

sin
[

πC0(T−|τ |)
2

]

πC0
, (54)

∣∣∣AFGx(t),α,λ(τ, f )
∣∣∣ = 2|A|2√cosecα ·

sin
[

π(2a2τ+a4τ 3−2 f cosecα)(T−|τ |)
2

]

π(2a2τ + a4τ 3 − 2 f cosecα)
,

−T ≤ τ ≤ T . (55)

From Eq. (55), the zero-Doppler response can be given by

∣∣∣AFGx(t),α,λ(τ, 0)
∣∣∣ = 2|A|2√cosecα ·

sin
[

π(2a2τ+a4τ 3)(T−|τ |)
2

]

π(2a2τ + a4τ 3)
, −T ≤ τ ≤ T .

(56)
With the zero-range and zero-Doppler responses, we can find range and Doppler
resolutions as follows:

From Eq. (56), the first zero occurs when

T = |τ | + 2

2a2τ + a4τ 3
. (57)

Hence, range resolution�R = cτ0/2, where τ0 is the smallest positive root of Eq. (57)
and ‘c’ is the velocity of light.

From Eq. (55), the zero-delay response is given by

∣∣∣AFGx(t),α,λ(0, f )
∣∣∣ = |A|2√cosecα · sin [πT f cosecα]

π f cosecα
. (58)

5.1.4 Waveform Analysis Using Different GFAFs

Multicomponent chirp signal x(t) = x1(t) + x2(t) is considered, where

x1(t) = eiπ
(
a1t+a2t2+a3t3+a4t4

)
, −2 ≤ t < 2 (in seconds) (59)

x2(t) = eiπ
(
b1t+b2t2+b3t3+b4t4

)
, −2 ≤ t < 2 (in seconds) (60)

are two fourth-order chirp signals.
Simulations have been done to analyze multicomponent cubic chirp signals, and

the respective AF plots are obtained by focusing at each individual component and
also focusing at both the components. The parameters used for the above simulation
are a1 = 4, a2 = 4, a3 = 4, a4 = 4, λa = 18.7880 and αa = 0.8087 for the first
component and b1 = 20, b2 = 15, b3 = 10, b4 = 5, λb = 20 and αb = −1 for
the second component. Here, αa, λa and αb, λb are the matched ck-GTFT kernel
parameters for first and second components, respectively. We consider fs = 200 Hz
as the sampling frequency. At the matched condition, the GFAF should produce an
impulse, which can be seen in Figs. 1 and 2.
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Fig. 1 The cubic kernel GTFT-basedGFAFplot formulticomponent cubic chirp signal focused at individual
components

Fig. 2 The cubic kernel GTFT-based GFAF plot for multicomponent cubic chirp signal

5.2 Extraction of Fourth-Order Chirp Parameters Using ck-GFAF

5.2.1 Proposed Method

Consider a signal x(t) = A0 · exp (iπ [
a1t + a2t2 + a3t3 + a4t4

])
. Now its instanta-

neous correlation is

x(t)x∗(t−τ)=|A0|2·exp
(
iπ

[
4a4τ t

3+(3a3τ −6a4τ
2)t2 + (2a2τ −3a3τ

2+a4τ
3)t

])
.

Now considering ck-GTFT, the kernel then becomes

Kα,λ(t, f ) = (
√
1 − icotα) · exp

(
iπ t20 f 2cotα + iπ f 20 t

2cotα − i · 2π f tcosecα

+iπλt30 f 3 − iπλ f 30 t
3
)
. (61)
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Now, if the GFAF has to show an impulse in the delay-Doppler domain, two conditions
have to be satisfied so that the cubic and quadratic phase coefficients will be matched
to the cubic and quadratic phase coefficients of GTFT kernel.

4a4τ = f 30 λ. (62)

3a3τ − 6a4τ
2 = − f 20 cotα, (63)

The location on frequency axis of the impulse is given by the following equation

2a2τ − 3a3τ
2 + 4a4τ

3 = 2 f cosecα. (64)

The method used for estimating the parameters of a single as well as multicomponent
chirp signal is as follows:

1. Iterate τ over the range (−Tmax, Tmax), where Tmax is the length of the signal.
Initially, rough estimation of chirp parameters can be obtained for reducing the
search range of parameters using STFT estimation. STFT cannot provide excellent
parameter estimation due to the dispersive nature of cubic chirp in the Fourier
domain. Fine parameter search for the entire range of τ is done, as explained in
further steps.

(a) For each τ in the range, we obtain a range for α and λ using Eqs. (62–64).
Perform fine search for α ∈ (αmin, αmax), λ ∈ (λmin, λmax), and find optimum
α̂opt and optimum λ̂opt which gives the maximum peak amplitude of GFAF,
per value of τ .

(b) Estimate parameters aest4 , aest3 and aest2 using optimum α̂opt and optimum λ̂opt.

(c) Multiply the signal with e−iπ(â4
est t4+â3

est t3+â2
est t2) which reduces the signal to

be of the form eiπ(a1t+err), where err is the error in conjugate multiplication
as a result of errors in estimating a4, a3 and a2.

(d) Find themaximum amplitude (say Aτ ) of the Fourier transform of the resultant
signal.

2. Repeat step 1 (a-d) for all τ .
3. Now, take the τ value which gives the maximum of all Aτ values as τopt and the

corresponding α̂opt, λ̂opt as αest
opt, λ

est
opt.

4. Finally, the chirp parameters aest4 , aest3 ,aest2 and aest1 are estimated using αest
opt, λ

est
opt .

5.2.2 Cross-terms Analysis for Multicomponent Chirps

Suppose we have a multicomponent signal x(t) given by

x(t) = x1(t) + x2(t), (65)

where x1(t) and x2(t) are single component cubic chirp signals:

x1(t) = A0exp(iπ(a1t + a2t
2 + a3t

3 + a4t
4)),

x2(t) = A0exp(iπ(b1t + b2t
2 + b3t

3 + b4t
4)). (66)
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Then the correlation is given by

x(t)x∗(t − τ)= x1(t)x
∗
1 (t − τ) + x2(t)x

∗
2 (t − τ)︸ ︷︷ ︸

autoterms

+x1(t)x
∗
2 (t − τ)+x2(t)x

∗
1 (t − τ)︸ ︷︷ ︸

cross-terms

.

We have the ambiguity functions for the auto-terms given as follows:

AF(x1,x∗
1 )(τ, f )︸ ︷︷ ︸

auto−term1

=
∞∫

−∞
|A0|2 · exp[iπ(4a4τ t

3 + (3a3τ − 6a4τ
2)t2

+ (2a2τ − 3a3τ
2 + a4τ

3)t)] · Kα,λ(t, f )dt,

AF(x2,x∗
2 )(τ, f )︸ ︷︷ ︸

auto−term2

=
∞∫

−∞
|A0|2 · exp[iπ(4b4τ t

3 + (3b3τ − 6b4τ
2)t2

+ (2b2τ − 3b3τ
2 + b4τ

3)t)] · Kα,λ(t, f )dt .

The matched condition for auto-term 1 is given by:

4a4τ = f 30 λopt1 ,

3a3τ − 6a4τ
2 = − f 20 cotαopt1 , (67)

where αopt1 and λopt1 are optimum α and optimum λ corresponding to first auto-term.
The location of the impulse for auto-term 1 in GFAF domain is given by:

fpeak1 = [2a2τ − 3a3τ
2 − a4τ

3] sin αopt1 . (68)

Similarly the matched condition for auto-term 2 is given by:

4b4τ = f 30 λopt2 ,

3b3τ − 6b4τ
2 = − f 20 cotαopt2 , (69)

where αopt2 and λ2 are optimum α and optimum λ corresponding to second auto-term.
The location of the impulse for auto-term 2 in GFAF domain is given by:

fpeak2 = [2b2τ − 3b3τ
2 − b4τ

3] sin αopt2 . (70)

Now looking at cross-term 1, we have

AFG
(x1,x∗

2 )
(τ, f ) =

∞∫

−∞
|A0|2 · exp[iπ((a4 − b4)t

4 + (a3 − b3 + 4b4τ − λ f 30 )t3

+ (a2 − b2 + 3τb3 − 6b4τ
2 + f 20 cotα)t2 + (a1 − b1 − 3b3τ

2

+ 4b4τ
3 + 2b2τ − 2 f cosecα)t)]dt . (71)
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From Eq. (71), we see that when a4 �= b4, the amplitude of the cross-terms will be
lesser than the impulse generated by the auto-terms. This is because no impulse can
be produced by the cross-terms when a4 �= b4. However, when a4 = b4, cross-terms
can produce impulse and give false information regarding auto-terms.

Now consider the case of a4 = b4. The matched condition for the above cross-term
1 to be an impulse is

a3 − b3 = f 30 λ − 4b4τ,

a2 − b2 = − f 20 cotα − 3b3τ + 6b4τ
2, (72)

with the peak produced in GFAF domain at

2 f = [a1 − b1 − 3b3τ
2 + 4b4τ

3 + 2b2τ ] sin α. (73)

τ varies from [−T , T ]. Using matched condition given in Eqs. (69) and (67), we get
the range of a3 − b3 and a2 − b2 as

− 8b4T < a3 − b3 < 8b4T ,

min(6b3T , 3(a3 + b3)T ) − 12b4T
2 < a2 − b2 < max(−6b3T ,−3(a3 + b3)T )

+ 12b4T
2. (74)

The same analysis can be performed for cross-term 2 as well. We then get

b3 − a3 = f 30 λ − 4a4τ,

b2 − a2 = − f 20 cotα − 3a3τ + 6a4τ
2. (75)

with the peak produced in GFAF domain at

2 f = [b1 − a1 − 3a3τ
2 + 4a4τ

3 + 2a2τ ] sin α. (76)

τ varies from [−T , T ]. Using matched condition given in Eqs. (69) and (67), we get
the range of a3 − b3 and a2 − b2 as

− 8a4T < a3 − b3 < 8a4T ,

min(6a3T , 3(a3 + b3)T ) − 12a4T
2 < a2 − b2 < max(−6a3T ,−3(a3 + b3)T )

+ 12a4T
2. (77)

We can reduce our search range by roughly estimating aest1 , aest2 , aest3 , and aest4 using
STFT or PFT. Therefore, using conditions for both cross-term 1 and cross-term 2 to
not produce impulse, we need either of the following conditions:
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a4 �= b4,

|b3 − a3| > max(8aest4 T , 8best4 T ),

|b2 − a2| > max(| − 6aest3 T + 12aest4 T 2|, | − 6best4 T + 12best4 T 2|). (78)

Hence, if the rough estimations through STFT or PFT are fairly accurate, then the only
possibility of cross-terms producing impulse is, if a4, a3, and a2 are sufficiently close
to b4, b3, and b2, respectively.

5.3 Simulation for Parameter Estimation Using GFAF

To demonstrate the effectiveness of ck-GFAF, amplitude-modulated cubic chirp x(t) is
considered, which is a sum of two amplitude-modulated cubic chirps x1(t) and x2(t)
given by:

x1(t) = exp
[
iπ(a1t + a2t

2 + a3t
3 + a4t

4)
]

− 1 ≤ t < 1 (in seconds),

x2(t) = exp
[
iπ(b1t + b2t

2 + b3t
3 + b4t

4)
]

− 1 ≤ t < 1 (in seconds), (79)

x(t) = 2e−0.08t · x1(t) + 1.5e−0.04t · x2(t). (80)

Simulations have been done to estimate the parameters of a fourth order chirp using
GFAF. TheGFAF technique has proven to be successful in estimating chirp parameters
from signals containingmultiple chirps. Here a4, a3, a2 and a1 are cubic rate, quadratic
rate, chirp rate, and Doppler frequency of the first component of multicomponent
cubic chirp. Similarly b4, b3, b2 and b1 are cubic rate, quadratic rate, chirp rate, and
Doppler frequency of second component of multicomponent cubic chirp. In the case
of multicomponent signals, a good separation of various components present in the
signal in the GFAF domain is required for effective parameter estimation.

Short time Fourier transform is used to find a rough estimation of parameters of the
multicomponent signal. STFTcannot provide excellent parameter estimationdue to the
dispersive nature of cubic chirp in the Fourier domain. Parameters estimation of a mul-
ticomponent signal is obtained by fine search or focusing near to optimum parameter
of individual component in a multicomponent chirp signal. Generally, the cross-terms
have a different optimum angle as compared to the optimum angle of auto-terms, so it
cannot give impulse at GFAF optimum angle α and optimum λ. So the effect of cross-
terms can be reduced in the GFAF domain. Conditions to avoid cross-terms are given
in the previous subsection. Under such cross-terms avoiding condition, Parameter esti-
mation of two closely spaced multicomponent cubic frequency-modulated signals is
presented in Table 2. Furthermore, the signal x1(t) given by Eq. (79) is considered to
analyze the effect of amplitude modulation in parameter estimation in the presence of
noise. It is observed that parameter estimation fails an SNR of -5 dB.
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Table 2 Parameter estimation of an amplitude-modulated chirp having multiple components

Parameter Values Chirp parameters
a1 a2 a3 a4 b1 b2 b3 b4

Actual 5 5 5 1 5 5 5 2

Estimated 5 4.88 5.13 1.07 5 5.002 5.086 2.07

6 SNR Gain andMean Error Analysis of ck-GFAF

6.1 GFAF SNR Gain Analysis

Consider a cubic chirp signal x(t) = A ·exp[iπ(a1t+a2t2+a3t3+a4t4)]. The GFAF
of the signal x(t) is defined as:

AFGx(t),α,λ(τ, f ) =
∞∫

−∞
x(t + τ/2)x∗(t − τ/2)Kα,λ(t, f )dt

= |A|2√1 − icotα

∞∫

−∞
exp

[
iπ

(
(4a4τ − f 30 λ)t3 + (3a3τ + f 20 cotα)t2

+ (2a2τ + a4τ
3 − 2 f cosecα)t + t20 f 2cotα + λ(t0 f )

3

+ a1τ + a3τ 3

4

)]
dt . (81)

The approximate analytical expression for the GFAF magnitude spectrum of a sig-
nal x(t) denoted by |AFGx(t),α,λ(τ, f )|2, using the stationary phase approximation for

unmatched cubic phase condition, where |2a2τ + a4τ 3 − 2 f cosec(α)| >> 0 is

∣∣∣AFGx(t),α,λ(τ, f )
∣∣∣ ≈2 ·

√√√√√
|A|4cosecα√(

3a3τ + f 20 cotα
)2 − 6

(
4a4τ − f 30 λ

) (
a2τ + a4τ3

2 − f cosecα
)

cos

⎛
⎜⎜⎝

π

√(
3a3τ + f 20 cotα

)2 − 6
(
4a4τ − f 30 λ

)
(a2τ + a4τ3

2 − f cosecα)

27
(
4a4τ − f 30 λ

)2

·
[
12

(
4a4τ − f 30 λ

)
(a2τ + a4τ

3

2
− f cosecα) − 2

(
3a3τ + f 20 cotα

)2] − π

4

)
.

AtGFAF-matched condition, (4a4τ = f 30 λ and 3a3τ = − f 20 cotα)we get an impulse

at f = a2τ sin α+ a4τ 3

2 sin αwith area |A|2||Aα|, where |Aα| is the amplitude ofGTFT
kernel.

SNR gain analysis at GFAF-matched condition has been derived as follows, con-
sidering input signal x(t) corrupted by additive white Gaussian noise n(t) of variance
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σ 2
n . SNR of the output signal y(t) = x(t) + n(t) is given by [3,21,46,55]

SNRGFAF = |AFGx(t),α,λ(τ, f )|2
var

[
|AFGy(t),α,λ(τ, f )|

] , (82)

where |AFGx(t),α,λ(τ, f )| is peakmodulus ofGFAF of the signal x(t), var represents the

variance operator, and var
[
|AFGy(t),α,λ(τ, f )|

]
is variance of the peak of the modulus

of GFAF of received signal y(t). It can be expressed as

var
[
|AFGy(t),α,λ(τ, f )|

]
= E

[∣∣∣AFGy(t),α,λ(τ, f )
∣∣∣2
]

− E
2
[∣∣∣AFGy(t),α,λ(τ, f )

∣∣∣
]
. (83)

Since the signal and noise are uncorrelated and noise is having zero mean,

E

[∣∣∣AFGy(t),α,λ(τ, f )
∣∣∣
]

=
+∞∫

−∞
E

([
x
(
t + τ

2

)
+ n

(
t + τ

2

)] [
x∗ (t − τ

2

)
+ n∗ (t − τ

2

)])

Kα,λ(t, f )dt .

∴ E

[∣∣∣AFGy(t),α,λ(τ, f )
∣∣∣
]

= |A|2|Aα|T 2 + σ 2
n |Aα|T , (84)

where T is the time duration of x(t).
Similarly,

E

[∣∣∣AFGy(t),α,λ(τ, f )
∣∣∣2
]

=
+∞∫∫

−∞
E

([
x
(
t1 + τ

2

)
+ n

(
t1 + τ

2

)]

[
x∗ (t1 − τ

2

)
+ n∗ (t1 − τ

2

)]
[
x∗ (t2 + τ

2

)
+ n∗ (t2 + τ

2

)] [
x
(
t2 − τ

2

)
+ n

(
t2 − τ

2

)])

Kα,λ(t1, f )K ∗
α,λ(t2, f )dt1dt2.

∴ E

[∣∣∣AFGy(t),α,λ(τ, f )
∣∣∣2
]

= |Aα|2
[
|A|4T 4 + 2T 2σ 4

n + 4T 3|A|2σ 2
n

]
. (85)

Hence, variance is given by

var|AFGy(t),α,λ(τ, f )| = |Aα|2
[
σ 4
n T

2 + 2T 3|A|2σ 2
n

]
. (86)
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Therefore, GFAF SNR and SNR gain are given by

SNRGFAF = |Aα|2|A|4T 4

|Aα|2 [σ 4
n T

2 + 2T 3|A|2σ 2
n

] = T 2SNR2
t

2TSNRt + 1
, (87)

SNRGFAF

SNRt
≈ T

2
, (88)

where SNRt is input SNR, defined as A2/σ 2
n . In discrete case, SNR gain is given by

SNRGFAF,discrete

SNRt
≈ D

N

K
, (89)

where D is a constant, K is the number of components, and N is the number of samples
during signal pulse time T .

6.1.1 SNR Gain Simulation

Consider a signal for SNR gain andmean error under different SNR conditions (Monte
Carlo simulation) as

s(t) = x1(t) + x2(t) + n(t), (90)

where n(t) is an additive white Gaussian noise (AWGN), x1(t) and x2(t) are fourth-
order chirp signals defined by

x1(t) = exp
(
iπ(4t4 + 4t3 + 5t2 + 4t)

)
, −1 ≤ t < 1 (in seconds),

x2(t) = exp
(
iπ(20t4 + 15t3 + 10t2 + 5t)

)
, −1 ≤ t < 1 (in seconds), (91)

Monte Carlo simulations for 200 noise realizations have been performed to compare
the SNR gain of GFAF and time domain-matched filtering for individual cubic chirp
components x1(t) and x2(t). The search range for the quadratic rate of the kernel (λ)
is considered to be (-13.4 : 0.001 : -13.42) and (19.99 : 0.001 : 20.01) for first and
second component, respectively. Similarly, the search range of GTFT optimum angle
(α) is considered (0.7991 : 0.001 : 0.8291) and (-0.99 : 0.001 : -1) for first and second
component respectively.

As shown in Fig. 3, time domain-matched filtering gives the highest SNR in case
of additive white Gaussian noise (AWGN), and it is equivalent to N1, where N1 is
the product of the bandwidth and the pulse width. GFAF is observed to have a lesser
SNR gain compared to that of time domain-matched filtering but performs better than
FrFT-based AF and classical AF.

6.2 Mean Square Error Analysis Simulation

Monte Carlo simulations for 200 noise realizations has been performed to compare
mean square errors in estimating cubic chirp parameters using GFAF of individual
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(a) (b)

Fig. 3 Monte Carlo Simulation to estimate the performance of GFAF in SNR gain

(a) (b)

Fig. 4 Monte Carlo simulation to estimate the performance of GFAF in parameter estimation

quadratic chirp components x1(t) and x2(t) asmentioned in Eq. (91). The search range
of quadratic rate and GTFT optimum angle are considered similar to the search range
for SNRgain analysis for first and second components. Figure 4a shows theMSE in the
estimation of first component x1(t) parameters in the presence of second component
x2(t) and AWGN noise n(t). Similarly Fig. 4b shows the MSE in the estimation of
second component x2(t) parameters in presence of first component x1(t) and AWGN
noise n(t). Finally, as shown in Fig. 4 as SNR increases, GFAF does better at parameter
estimation and has lesser MSE in the estimations.

GFAF-based parameter estimation is a nonlinear transform and produces cross-
terms during multicomponent chirp signals. So it will not work satisfactorily at low
SNR condition in case of multicomponent chirp signals. Furthermore, reduction in
cross-terms can be explored by using the product of different lag GFAF or product-
GFAF during multicomponent polynomial phase signal analysis. Some smoothing
filter can be explored to remove cross-terms of GFAF for multicomponent weak or
low SNR signals detection.
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(a) (b)

Fig. 5 Comparison of MSE in parameter estimation with different transforms

6.3 Comparison of MSE in Parameter Estimation with Different Transforms

The GFAF method is compared with different estimators such as HAF and Cramer–
Rao lower bound (CRLB) [4,38]. Here, we consider a chirp signal x(t) given by

x(t) = exp
(
iπ(20t4 + 15t3 + 10t2 + 5t)

)
,−1 ≤ t < 1 (in seconds). (92)

Monte Carlo simulations have been performed for 100 iterations to obtain the MSE in
the estimation of the parameters a3 and a4 in case of a single component chirp signal.
The results are as shown in Fig. 5. Each phase differentiation or correlation increases
the SNR threshold by approximately 6 dB [4]. GFAF performs only one de-chirping or
phase differentiation for estimating the fourth-order phase coefficient a4. In contrast,
HAF performs multiple de-chirping to estimate the fourth-order phase coefficient. As
shown in Fig. 5, HAF follows CRLB after 12 dB input SNR, whereas GFAF follows
CRLB at approximately 6 dB input SNR. So HAF has a higher SNR threshold then
GFAF for estimating chirp parameters. As shown in Fig. 5b, GFAF performs better
than HAF transform for estimating the higher order phase coefficient a4.

Error propagation is happening due to the correlation operation. GFAF uses lesser
correlation operation as compared to HAF for estimating cubic chirp. As shown in
Fig. 5a, error propagation in GFAF from higher- to lower-order phase coefficient a3
is very less as compared to HAF, due to a single de-chirping operation. Also, GFAF
performs better than HAF transform for estimating the lower-order phase coefficient
a3. As opposite to HAF, GFAF estimates more parameters of cubic chirp at once.
Hence, error propagation is less in GFAF as compared to HAF. As shown in both the
diagrams in Fig. 5, at higher SNR, the GFAF-estimated parameters follow CRLB-
estimated parameters.

A combination of correlation and higher-order GTFT kernel in GFAF can be used
to analyze any frequency-modulated chirp. As the number of correlations increases,
the SNR threshold increases, and as the order of GTFT kernel increases, computa-
tional complexity increases. Thus, GFAF gives the flexibility to choose the number
of correlations and order of GTFT kernel based on SNR threshold and computational
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complexity requirement for analyzing any higher-order chirp signals. These properties
make GFAF superior to other transforms.

In the case of higher-order chirp signals with low SNR and very high phase order,
GFAF needs to use multiple correlators to reduce computational complexity during
parameter estimation. Each correlation increases the SNR threshold by approximately
6 dB and also increases cross-terms. In such a condition, GFAF cannot estimate the
parameter of low-SNR, higher-order chirp signals.

6.4 Error Propagation Analysis

This section presents error propagation analysis for estimating single component cubic
chirp parameter using GFAF. Cubic chirp is considered as defined in Sect. 5.2.1.

Consider αopt, λopt, τopt and fopt be the optimum values obtained at matched con-
dition. Let δα, δλ and δ f be estimation errors in calculating αopt, λopt and fopt,
respectively. We find error in a4, a3, a2 and a1, i.e., δa4, δa3, δa2 and δa1 in terms
of δα, δλ and δ f . For simplicity of analysis, we assume that the estimation error in
calculating τopt is negligible. Thus, τ = τopt. For readability, we denote λopt, αopt, fopt
by λ, α, f , respectively.

Similar to the method in [28], δα, δλ and δ f are considered uncorrelated Gaussian
random variables N (0, σ 2

α ), N (0, σ 2
λ ) and N (0, σ 2

f ), respectively. Also letE[δα ·δλ] =
σ 2

α,λ, E[δα · δ f ] = σ 2
α, f and E[δλ · δ f ] = σ 2

λ, f .
From the matched conditions in Eqs. (62–64), we can calculate the error variance

in a4, a3, a2 and a1. Using the cubic matched condition in Eq. (62), we get:

a4 = f 3o λ

4τ
,

δa4 = f 3o · δλ

4τ
, (93)

var(δa4) = f 6o · σ 2
λ

(4τ)2
. (94)

Substituting the value of a4 from Eq. (62) in quadratic matched condition of Eq. (63),
we obtain:

a3 = − f 2o cotα

3τ
+ f 3o λ

2
, (95)

δa3 = f 3o · δλ

2
+ f 2o cosec

2α · δα

3τ
, (96)

var(δa3) = f 6o · σ 2
λ

4
+ f 4o cosec

4α · σ 2
α

(3τ)2
+ f 5o cosec

2α · σ 2
α,λ

3τ
. (97)

Substituting the value of a4 fromEq. (62) and a3 fromEq. (63) in the linear matched
condition of Eq. (64), we get:-
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a2 = f cosecα

τ
− f 2o cotα

2
+ f 3o λτ

4
, (98)

δa2 = f cosecα · cotα · δα

τ
+ f 2o cosec

2α · δα

2
+ f 3o τ · δλ

4

+ cosecα · δ f

τ
, (99)

var(δa2) = f 2cosec2α · cot2α · σ 2
α

τ 2
+ f 4o cosec

4α · σ 2
α

4
+ f 6o τ 2 · σ 2

λ

16

+ cosec2α · σ 2
f

τ 2
+ f f 2o cosec

3α · cotα · σ 2
α

τ
+ f f 3o cosecα · cotα · σ 2

α,λ

2

+ 2 f cosec2α · cotα · σ 2
α, f

τ 2
+ f 5o τcosec2α · σ 2

α,λ

4
+ f 2o cosec

3α · σ 2
α, f

τ

+ f 3o cosecα · σ 2
λ, f

2
. (100)

To get a1, we multiply the original signal with the conjugate of the estimated signal
as mentioned in 5.2.1. Taking the Fourier transform of the received signal, let f ′ be
the frequency corresponding to the maxima. Then a1 = 2 f ′ when estimation error in
a2, a3 and a4 are neglected.

Let δa1 correspond to the error in a1.

a1 − 2 f ′ = δa1, (101)

f ′ = argmax f

[ T∫

−T

exp[iπ(δa4t
4 + δa3t

3 + δa2t
2 + (a1 − 2 f )t)]dt

]
,

(102)

where argmaxf denotes the maximum of the argument over all f . Since the powers
of estimation error in the parameters will be very small for the high SNR regime, i.e.,
δa4T 4+δa3T 3+δa2T 2+(a1−2 f )T � 1, we use the approximation ex ≈ 1+x+ x2

2 .

f ′ ≈ argmax f

[ T∫

−T

(
1 + iπ [δa4t4 + δa3t

3 + δa2t
2 + (a1 − 2 f )t]

+ [iπ(δa4t4 + δa3t3 + δa2t2 + (a1 − 2 f )t)]2
2

)
dt

]
, (103)

f ′ = argmax f

[
K +

(
T 3(a1 − 2 f )2

3
+ 2T 5δa3(a1 − 2 f )

5

)]
, (104)
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where

K =
T∫

−T

(
1 + iπ(δa4t

4 + δa3t
3 + δa2t

2) + [iπ(δa4t4 + δa3t3 + δa2t2)]2
2

)
dt .

(105)

Thus, K is independent of f . To maximize above expression, optimal f = f ′ is found
at the critical point. On differentiating Eq. (104) with respect to f and equating the
result to 0, we obtain:

f ′ = 1

2

[
a1 − 3T 2 · δa3

5

]
, (106)

Further, using Eq. (101), we get:

δa1 = 3T 2 · δa3
5

, (107)

var(δa1) = 9T 4 · var(δa3)
25

. (108)

WritingT = fs N ,wenote that the relationbetweenvar(δa1) andvar(δa3) is consistent
with the CRLB bounds for fourth-order chirp [32].

Thus, from Eq. (108), the estimation error in a1, i.e., δa1 is majorly dependent on
the estimation error in a3, i.e., δa3. It will also depend on estimation errors in δa2
and δa4 (if we consider higher-order terms in the series expansion of ex ). However,
the propagation of error in δa1 by δa2 and δa4 will be much smaller than the error
propagation by δa3. Note that this result will also hold if estimation error in τopt is
considered.

At higher values of SNR, the x2 term can also be neglected and thus the error in a1
becomes almost negligible. This can be observed in Fig. 4 at higher values of SNR.

7 Real Multicomponent Bat Echolocation Signal Analysis

The real echolocation signal of a large brown bat is considered to estimate its param-
eters. It is a multicomponent chirp signal with a sampling frequency of 142, 000 Hz
with 400 samples. TFDs of adaptive fractional spectrogram (AFS) are demonstrated
in Fig. 6a for better illustration of the four components of bat signal. Figure 6b, d rep-
resent 3D plot and shift-amplitude distribution of GFAF for bat signal, respectively.
As shown in Fig. 6c, four impulse or peaks are visible in the frequency-amplitude
distribution of the GFAF plot corresponding to the four components of the bat signal.
As mentioned in [6], this signal contains four components at different time-intervals,
whose parameters are reported in Tables 3 and 4. The parameters of this signal are
estimated by focusing on four components of a multicomponent bat signal using the
algorithm mentioned in Sect. 5.2.1. As shown in Table 3, the signal is considered to
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(a) (b)

(c) (d)

Fig. 6 Spectrogram view of real bat echolocation signal using different TFDs. a AFS, b 3D plot of GFAF,
c frequency- amplitude distribution of GFAF, d shift-amplitude distribution of GFAF

Table 3 Parameter estimation of a bat echolocation signal having multiple components of 3rd order

Signal Sample range Estimated parameters
a3 a2 a1

1st component 1:150 9.9467 × 109 −3.5058 × 107 8.7093 × 104

2nd component 121:280 2.5174 × 109 −1.8906 × 107 9.7625 × 104

3rd component 226:385 −8.7099 × 109 −5.6132 × 106 7.2775 × 104

4th component 141:280 4.1639 × 109 −2.0173 × 107 9.3314 × 104

be a chirp of third order, and FrFT-based AF is applied to estimate its parameters. As
shown in Table 4, the signal is considered to be a chirp of fourth order, and ck-GFAF
is applied to estimate its parameters up to fourth order. For both cases, the estimated
parameters for different components until third order are found to be similar.

8 Sigmoid-Based GFAF

Similar to fractional Fourier transform-based AF [18], we propose sigmoid-based
GFAF and GWVD for the algorithm to work under non-Gaussian noise. These
sigmoid-based transforms do not require any prior knowledge of impulse noise and
have been shown to be capable of reducing impulse noise in parameter estimation in
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Table 4 Parameter estimation of a bat echolocation signal having multiple components of 4th order

Signal Sample range Estimated parameters
a4 a3 a2 a1

1st component 1:150 −5.0493 × 1010 1.1832 × 1010 −3.8411 × 107 8.8987 × 104

2nd component 121:280 8.9772 × 1010 2.7342 × 109 −1.9232 × 107 9.7625 × 104

3rd component 226:385 6.3435 × 1012 −1.3906 × 1010 −5.7777 × 106 7.2775 × 104

4th component 141:280 −3.7566 × 1011 4.427 × 109 −2.0173 × 107 9.3314 × 104

fractional Fourier transform, and fractional Fourier transform-based ambiguity func-
tion [18,19].
For a given signal x(t) with finite L2 norm:

– The proposed sigmoid-based GFAF, AFS
x(t),α,λ(τ, f ) is defined as

AFS
x(t),α,λ(τ, f ) =

∞∫

−∞
sigmoid[x(t + τ/2)]sigmoid[x∗(t − τ/2)]Kα,λ(t, f )dt .

(109)
– The proposed sigmoid-based GFWVD, WDFS

x(t),α,λ(t, f ) is defined as

WDFS
x(t),α,λ(t, f ) =

∞∫

−∞
sigmoid[x(t+τ/2)]sigmoid[x∗(t−τ/2)]Kα,λ(τ, f )dτ,

(110)

where sigmoid[x(t)] = 2
1+exp[−x(t)] − 1. However, this paper is limited to GFAF for

Gaussian noise, and the extensive study of these transforms under non-Gaussian noise
conditions can be considered in the future.

9 Conclusion

Anew kind ofAF- andWDF-based onGTFT to estimate the parameter of higher-order
chirp signals, and to analyze higher-order radar waveforms is proposed. GFAF can be
used to analyze various waveform properties of higher-order chirp signals for its suit-
ability as a radar waveform. GFAF andGFWVD can be used to estimate a large variety
of multicomponent higher-order chirp signals by choosing the appropriate h(·) func-
tion in GTFT kernel. GFAF follows the property of index additivity of angle (similar
to FrFT); hence, GFAF is computationally efficient. The computational complexity of
GFAF is lesser than generalized CPF, maximum likelihood, and QML estimator for
estimating higher-order chirp parameters. GFAF is computationally efficient as com-
pared to the GTFT for estimating the same higher-order chirp. However, as the chirp
order increases, the computational complexity for parameter estimation using GFAF
increases. In such cases, a combination of correlation and higher-order GTFT kernel
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in GFAF can be used to analyze any higher-order chirp with reasonable computational
complexity. SNR gain of ck-GFAF for multicomponent cubic frequency-modulated
signal is less than time domain-matched filter but is more than that of FrFT-based
AF and classical AF. At higher SNR, GFAF-estimated parameters follow CRLB-
estimated parameters. GFAF can provide better SNR threshold as compared to HAF,
and other multi-lag phase differentiation transforms due to the use of a single de-
chirping operation. Ck-GFAF is capable of estimating fourth-order parameters of all
the four components of the real multicomponent bat signal, and it is comparable with
estimated parameters of FrFT-based AF. Parameter estimation and waveform analysis
of chirp signal using GFAF and GFWVD can be used in applications such as radar,
sonar, and biomedical signal processing.

In the future, GFAF applications on SAR groundmoving target detection and imag-
ing will be explored further and compared with different techniques. The possibility of
using GFAF for analyzing properties of different waveforms such as hyperbolic chirp,
sinusoidal frequency-modulated waveform, etc., can be explored. Product GFAF with
different lags can be explored to reduce the effect of cross-terms during multicom-
ponent signal analysis. The possibility of using a smoothing filter can be explored to
remove cross-terms of GFAF during multicomponent analysis. Sigmoid-based GFAF
and GWVD can be used for parameter estimation of higher-order chirps under non-
Gaussian noise conditions.
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