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Abstract—Time domain matched filtering is a classic method
used in radar and sonar applications to maximize signal to
noise ratio (SNR) gain, estimate time delay, and improve range
resolution. Fractional Fourier transform, and fractional Fourier
domain matched filtering are used extensively to overcome the
drawbacks of time domain matched filtering and are shown
to have improved performance for a linear chirp. This paper
presents a generalized fractional matched filtering (GFMF) for
estimating higher order chirp parameters with known time delay.
It is shown to provide SNR gain equivalent to time domain
matched filtering. As an application of GFMF, a novel method
to minimize SNR gain degradation due to the range-Doppler
coupling effect of quadratic chirps is presented. For a higher
order chirp with unknown time delay, another method using
generalized fractional envelope correlator (GFEC) is proposed,
which performs joint estimation of time delay and higher order
chirp parameters using a double quadratic chirp.

Index Terms—Higher order chirp, fractional matched filtering,
parameter estimation, fractional envelope correlation.

I. INTRODUCTION

Time domain matched filtering correlates a known signal
(replica of the transmitted signal) with an unknown signal
(received signal) [1]. Time domain matched filter gives the
highest SNR gain, improves range resolution, and is useful
for estimating time delay of high SNR as well as low SNR
moving targets in radar and sonar applications. In the case of
linear and higher order chirps, time domain matched filtering
produces significant degradation in output SNR due to the
range-Doppler coupling, and is unable to estimate higher order
chirp parameters [2, pp. 803-806].

The fractional Fourier matched filter was proposed for
linear chirps, and it was shown to perform better than time-
domain matched filtering in the presence of chirp noise [1].
FrFT (fractional Fourier transform) and FrFT domain matched
filtering also provide better sidelobe suppression as compared
to time-domain matched filtering for linear chirps [3], [4].
FrFT performs better than time-domain matched filtering for

linear chirps in the presence of Doppler frequency because its
peak amplitude depends on the chirp rate.

The second section of this paper describes the basics
of generalized time-frequency transform (GTFT). The third
section of this paper describes GTFT based matched filter
called GFMF, which generalizes fractional and time domain
matched filtering. Its SNR gain is shown to be comparable to
time domain matched filtering for higher order chirps. It also
describes applications of GFMF to solve SNR gain degradation
due to the range-Doppler coupling effect in quadratic chirps.

GFMF estimates higher order chirp parameters with known
time delay. But in case of unknown time delay, joint time
delay and higher order chirp offset parameter estimation
is an important issue in signal processing and well-known
problem in wireless communication systems [5], [6]. Joint
estimation of time delay and frequency offset was proposed
using sum of two linear chirps waveform by fractional Fourier
envelope correlator [5]. Fractional Fourier envelope correlation
provides good target detection in case of low SNR, and it
gives superior noise performance compared to FrFT [5]. Joint
estimation of time delay, frequency offset, and frequency offset
rate was proposed for the detection of passive systems by
cross-ambiguity function [6]. However, it cannot be used for
detecting higher order frequency offset parameters. This paper
proposes a novel method for joint estimation of time delay and
higher order chirp offset parameters using GFEC and double
quadratic chirp, described in the fourth section of the paper. It
also describes mean square error (MSE) simulations for joint
parameter estimation of time-delayed higher order chirp.

II. BASICS OF GTFT
If a signal x(t) has finite absolute integral (finite L1 norm),

its GTFT evaluated at parameters (α, λ) is given by

Xα,λ(f) =

+∞∫
−∞

x(t)Kα,λ(t, f)dt, (1)



where Kα,λ(t, f) is kernel of GTFT and defined as [7]

Kα,λ(t, f) =



√
1− i cotα · exp

(
iπt20f

2 cotα+ iπf20 t
2 cotα− i2πft

cosecα+ i · h(λ, t0f)− i · h(λ, f0t)
)
, if α 6= nπ

δ(f0t− t0f), if α = 2nπ

δ(f0t+ t0f), if α = (2n+ 1)π

where h(·) is a real valued dimensionless function, n is an
integer, α and λ are real valued GTFT parameters, t0 (in
seconds), f0 (in Hertz) are dimensional normalisation factors,
t20 = Tmax

fs
, f2

0 = fs
Tmax

, t20f
2
0 = 1, Tmax is the window length

during GTFT and fs is the sampling frequency.
The GTFT can be used to analyze a much wider variety

of frequency modulated signals by varying h(·) in the GTFT
kernel. Cubic-kernel-GTFT (ck-GTFT) may be defined by
substituting the parametric function h(·) as

h(λ, z) = πλz3. (2)

It is to be noted that ck-GTFT is similar to third order
polynomial Fourier transform, with the added advantage of
possessing the property of index additivity of angle.

III. GENERALIZED FRACTIONAL MATCHED FILTER

This section presents the mathematical derivation of maxi-
mum SNR gain and impulse response of GFMF.

A. Maximum SNR gain and impulse response of GFMF

Let Sα,λ(fα,λ) represent the GTFT domain power spec-
tral density at (α, λ) for input time domain additive white
Gaussian noise (AWGN), where α and λ are parameters of
ck-GTFT kernel. GTFT domain power spectrum density is a
generalization of the fractional power spectral density [8]. Let
Hα,λ(fα,λ) be the transfer function of the matched filter in
GTFT domain at parameters (α, λ).
Output noise power spectral density Soutα,λ(fα,λ) at (α, λ) is
given by Soutα,λ(fα,λ) = |Hα,λ(fα,λ)|2·Sα,λ(fα,λ).

Thus, total output noise power at (α, λ) =
+∞∫
−∞

Soutα,λ(fα,λ)dfα,λ.

From conservation of energy along any angle in GTFT,

+∞∫
−∞

Soutα,λ(fα,λ)dfα,λ =

+∞∫
−∞

Soutα+π/2,λ(fα+π/2,λ)dfα+π/2,λ. (3)

Let Xα,λ(fα,λ), Yα,λ(fα,λ) be the input and the output of the
GFMF at parameters (α, λ) respectively. If SNRoutα,λ is output
SNR of GFMF at (α, λ), then we have

SNRoutα,λ =
Peak signal power in GTFT domain at (α, λ)

Total noise power in GTFT domain at (α, λ)
.

The output signal Yα,λ(fα,λ) at (α, λ) is given by
F
−π
2

[
Xα+π

2 ,λ
(fα+π

2 ,λ
) ·Hα+π

2 ,λ
(fα+π

2 ,λ
)
]
, where F

−π
2 is

the inverse Fourier transform operator. Assume α+ π/2 = β,
then the output SNR of the GFMF is:

SNRoutα,λ =

max

∣∣∣∣∣∣∣
∞∫
−∞

Xβ,λ(fβ,λ)Hβ,λ(fβ,λ)

ei2πfα,λfβ,λdfβ,λ

∣∣∣∣∣∣∣
2

∞∫
−∞

Sβ,λ(fβ,λ)|Hβ,λ(fβ,λ)|2dfβ,λ
, (4)

Let numerator be highest at fα,λ = f ′α,λ, then output SNR is

SNRoutα,λ =

∣∣∣∣∣∣∣∣
∞∫
−∞

Xβ,λ(fβ,λ).
√
Sβ,λ(fβ,λ)√

Sβ,λ(fβ,λ)

Hβ,λ(fβ,λ)ei2πf
′
α,λfβ,λdfβ,λ

∣∣∣∣∣∣∣∣
2

∞∫
−∞

Sβ,λ(fβ,λ)|Hβ,λ(fβ,λ)|2dfβ,λ
.

(5)

From Cauchy-Schwartz inequality, we get

SNRoutα,λ ≤

 ∞∫
−∞

|Xβ,λ(fβ,λ)|2

Sβ,λ(fβ,λ)
dfβ,λ

 . (6)

Thus, maximum SNRoutα,λ =

∞∫
−∞

|Xβ,λ(fβ,λ)|2

Sβ,λ(fβ,λ)
dfβ,λ. (7)

Let n(t) be time domain AWGN with power spectrum density
η
2 and E is expectation operator in GTFT frequency domain.
Then, the GTFT domain power spectral density of n(t) at
parameters (β, λ) can be written as:

Sβ,λ(fβ,λ) = E

[∣∣∣ ∫ n(τ)Kβ,λ(τ, fβ,λ)dτ
∣∣∣2],

=

∫ ∫ ∫
n(τ1)n∗(τ2)Kβ,λ(τ1, fβ,λ)

K∗β,λ(τ2, fβ,λ)dτ1dτ2dfβ,λ,

=

∫ ∫ ∫
n(τ1)n∗(τ2)|cosecβ|exp[iπ cotβ

· f2
0 (τ2

1 − τ2
2 ) + i2πfβ,λcosecβ(τ2 − τ1)

+ i · h(λ, f0τ2)− i · h(λ, f0τ1)]dτ1dτ2dfβ,λ.

Sβ,λ(fβ,λ) =

∫
|n(τ)|2dτ =

η

2
. (8)

From conservation of energy along any angle in GTFT,
∞∫
−∞
|Xβ,λ(fβ,λ)|2dfβ,λ = τ , where τ is pulse width. The input

noise power spectrum density at β in Eq. (8) is substituted
in Eq. (7) to get the expression for maximum SNRoutα,λ. After
these substitution in Eq. (7), maximum SNRoutα,λ = 2 · τ/η.
Considering a unit amplitude signal, we get

GFMF SNR gain at (α, λ) =
Maximum SNRoutα,λ

SNRinα,λ
,

=
2 · τ/η

2/η
= τ, (9)



where SNRinα,λ is the input SNR at (α, λ), and SNRinα,λ =
1
η/2 . Thus, the SNR gain of GFMF at (α, λ) is equal to time
domain matched filter, as demonstrated in Eq. (9). Equality
holds in Eq. (6) when,[

Xβ,λ(fβ,λ)√
Sβ,λ(fβ,λ)

]∗
= k.

[√
Sβ,λ(fβ,λ)

·Hβ,λ(fβ,λ)ei2πf
′
α,λfβ,λ

]
,

(10)

where k is a real constant and ∗ is the conjugate operator.

Hβ,λ(fβ,λ) =
X∗β,λ(fβ,λ) · e−i2πf

′
α,λfβ,λ

k.Sβ,λ(fβ,λ)
. (11)

Now, from Eq. (11), by taking inverse Fourier transform we
get the impulse response of GFMF at (α, λ) as:

Hα,λ(fα,λ) =
2X∗α,λ(f ′α,λ − fα,λ)

k · η
. (12)

Without loss of generality we can assume k = 1 (as k is a
proportionality constant) and f ′α,λ = 0. Then, we get

Hα,λ(fα,λ) =
2X∗α,λ(−fα,λ)

η
. (13)

When λ = 0, from Eq. (13), then impulse response of GFMF
becomes impulse response of fractional Fourier matched filter
[3]. When λ = 0 and α = π

2 , then impulse response of GFMF
becomes transfer function of time domain matched filter.

B. Simulation results: SNR gain comparison of GFMF

In this section, Monte Carlo simulation of 500 iterations
has been performed to compare SNR gain of GFMF with
SNR gain of time domain matched filtering, FrFT, and GTFT
for a single quadratic chirp. Fig. (1) shows the SNR gain
comparison in the presence of AWGN noise and zero Doppler
frequency of quadratic chirp.

As shown in Fig. (1), SNR gain of GFMF is equal to SNR
gain of time domain matched filtering, and this corroborates
the mathematical derivation in Eq. (9). GFMF is useful as
compared to time domain matched filtering, as it gives equiv-
alent SNR gain and is able to estimate higher order chirp
parameters. SNR gain of GTFT is less than GFMF. SNR gain
of FrFT is less than GTFT and GFMF due to the presence of
the quadratic phase. GFMF outperforms time domain matched
filtering, FrFT, and GTFT in terms of SNR gain and estimating
higher order chirp parameters with known time delay. For
chirps with unknown time delay, we propose another method
in the fourth section of this paper.

The parameters for the simulation are pulse width = 1 sec,
SNR variation = (0:10:40) dB, chirp rate = 100 Hz2, quadratic
rate = 150 Hz3, time delay = 0 sec.
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Fig. 1. SNR gain comparison at 0 Hz Doppler frequency

C. GFMF applications: Range-Doppler coupling effect

In this section, Monte Carlo simulation of 500 iterations
has been performed to compare SNR gain degradation of time
domain matched filtering with GFMF for a single quadratic
chirp. Time-domain matched filtering gives SNR gain degra-
dation due to a significant mismatch between the transmitted
and received waveforms in the case of linear chirp and higher
order chirp. When the Doppler frequency of the received
waveform is large with respect to waveform bandwidth, then
time-domain matched filtering produces significant degrada-
tion in output SNR [2, pp. 803-806]. The simulation shown
in Fig. (2) compares the SNR gain of GFMF and time
domain matched filtering with varying Doppler frequency.
Similar simulation parameters as the previous simulation are
considered, and Doppler frequency varied with the percentage
of signal bandwidth, denoted as percentage fractional Doppler
shift. In the simulation, SNR gain of time domain matched
filtering decreases with an increase in Doppler frequency. SNR
gain in GFMF is almost constant with respect to Doppler
frequency because the peak amplitude of GFMF depends on
α and λ parameters of GTFT kernel and is independent of
Doppler frequency. Hence, GFMF is capable of solving SNR
gain degradation due to the range-Doppler coupling effect in
quadratic chirps.
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Fig. 2. SNR gain variation w.r.t percentage fractional Doppler shift

IV. GENERALIZED FRACTIONAL ENVELOPE CORRELATION

In the case of GFMF, for quadratic chirps, peak amplitude’s
position depends on α parameter of GTFT kernel, which in
turn depends on time delay. Since quadratic chirp contains



third order phase terms, a closed-form expression for a peak
position of GFMF output is difficult to determine. Hence, this
section presents GFEC, which is a generalization of fractional
envelope correlator [5]. GFEC is a method to determine time
delay and perform joint estimation of higher order chirp offset
parameters in case of unknown time delay.

A. Calculation of peak shift

This subsection presents the calculation of the peak position
of GFEC output for a quadratic chirp.

1) ck-GTFT of the transmitted chirp pulse: Consider a
quadratic chirp transmission waveform xtr(t) as:

xtr(t) = rect

(
t

τ

)
eiaπt

2+icπt3 , (14)

where a is chirp rate and c is quadratic rate. We define λo and
αo to be corresponding λ and α at matched conditions respec-
tively. Also, Xtr

αo1,λ
o
1
(f) is the corresponding GTFT transform

of xtr(t) at matched conditions. Thus, at matched GTFT of
cubic phase, c−f3

0λ
o
1 = 0, quadratic phase f2

0 cotαo1 +a = 0,
and putting Aαo1 =

√
cosecαo1, we get

|Xtr
αo1,λ

o
1
(f)| = Aαo1τ · sinc(fαo1,λo1 · cosecαo1 · τ). (15)

2) ck-GTFT of the received pulsed chirp waveform: Con-
sidering an extension of the echo model presented in [6], the
received signal xrecv(t) is taken to be:

xrecv(t) = x(t− td).ei2πfdt+iπart
2+iπJrt

3

,

= rect

[
t− td
τ

]
eicπ(t−td)3+iaπ(t−td)2 (16)

· ei2πfdt+iπart
2+iπJrt

3

,

where td is time delay, fd is frequency offset, ar is frequency
offset rate, and Jr is rate of frequency offset rate. Also,
Xrecv
αo1,λ

o
1
(f) is the corresponding GTFT transform of xrecv(t) at

matched conditions. At matched cubic phase (c+Jr)−f3
0λ

o
2 =

0, quadratic phase f2
0 cotαo2 + a+ ar − 3ctd = 0, and putting

Aαo2 =
√

cosecαo2 we get

|Xrecv
αo2,λ

o
2
(f)| = Aαo2τsinc(τ [fcosecαo2 − fp]), (17)

where fp = 1.5ct2d − atd + fd. Further, substituting quadratic
matched conditions, a = 3ctd−ar−f2

0 cotαo2 of the received
signal in the expression of fp we obtain,

fp = f2
0 td cotαo2 + fd − 1.5ct2d + artd, (18)

3) Envelope correlation in GTFT domain: GTFT of trans-
mit wave at parameters (αo1, λ

o
1) is taken from Eq. (15), and

GTFT of the received wave at parameters (αo2, λ
o
2) is taken

from Eq. (17). In this method, cross correlation of known
transmitted waveform and the unknown received waveform
is performed, without considering the phase component. We
choose the chirps such that |sinαo2|> |sinαo1|. Using Eq. (15)

and Eq. (17), we formulate GFEC correlated output Xcorr(ε),
which can be written as a multiplication in the Fourier domain.

Xcorr(ε) = F
π
2

[
F
−π
2 [|Xrecv(f)|] · F

−π
2 [|Xtr(f)|]

]
,

=F
π
2

[
Aαo1

cosecαo1
· rect

[
t

τcosecαo1

]
·

Aαo2
cosecαo2

·

rect

[
t

τcosecαo2

]
exp (i2πt sinαo2f

p)

]
,

= Aαo1Aαo2τ sinαo1sinc(τ · [f · cosecαo2 − fp]). (19)

The correlation of two shifted, unequal sinc waveforms in the
GTFT domain is a sinc waveform. The peak shift would be
equal to the offset of frequencies between the sinc waveforms.
Thus, the peak shift in GFEC output is given by: fp · sinαo2.
For simplicity of notation, we henceforth replace αo2 by α.
Thus, we get that:

∆d = f2
0 td cosα+ fd sinα− 1.5ct2d sinα+ artd sinα, (20)

where ∆d is peak shift of output of GFEC. After normal-
ization, the samples are spaced 1

∆x = 1√
Tmax·fs

apart in
GTFT domain; so to get the actual sample difference, we have
to multiply distance ∆d with ∆x and t0. After performing
dimensional normalization in GTFT domain, expression of
peak shift of output of GFEC can be given by:

∆dn = ∆x∆d · t0, (21)

=
[√

Tmaxfs

]
.

√
Tmax
fs

[
td cosα · fs

Tmax
+ fd sinα

− 1.5c · t2d sinα+ ar · td sinα

]
, (22)

= fstd cosα+ (fd − 1.5ct2d + artd)Tmax sinα, (23)

where ∆dn is peak shift of output of GFEC after dimensional
normalization. Hence, the peak shift is given by:

∆dn = fstd cosα+ (fd − 1.5ct2d + artd)Tmax sinα (24)

B. GFEC applications: Joint parameter estimation

This section presents the mathematical derivation for joint
estimation of time delay and chirp offset parameter. The
transmitted signal xtr(t) is a double quadratic chirp, used for
joint parameter estimation. A double quadratic chirp contains
two quadratic chirps of the same pulse width but different
chirp parameters, and is given by:

xtr(t) = rect
( t
τ

)
.[eic1πt

3+ia1πt
2

+ eic2πt
3+ia2πt

2

], (25)

Considering an extension of the echo model presented in [6],
the received signal xrecv(t) is given by:

xrecv(t) = x(t− td).ei2πfdt+iπart
2+iπJrt

3

,

= rect

[
t− td
τ

]
.
[
eic1π(t−td)3+ia1π(t−td)2 (26)

+ei.c2π(t−td)3+ia2π(t−td)2
]
· ei2πfdπt+iπart

2+iπJrt
3

,



where c1, a1 and c2, a2 are quadratic rate and chirp rate of the
respective chirps. Applying GTFT to xrecv(t), we get:

Xrecv
α,λ (f) =

+∞∫
−∞

rect

[
t− td
τ

] [
eic1π(t−td)3+ia1π(t−td)2

+eic2π(t−td)3+ia2π(t−td)2
]
.ei2πfdt+iπart

2+iπJrt
3

·Kα,λ(t, f)dt, (27)

If λf3
0 = c+ Jr, cubic phase term is zeroed out and we get:

= Aα

+∞∫
−∞

rect

[
t− td
τ

]
exp

[
iπ[��ct

3 − ct3d − 3ct2td + 3ctt2d

+at2 + at2d − 2attd + 2fdt+ art
2 + ���Jr · t3 − 2ft (28)

·cosecα+ t20f
2cotα+ f2

0 t
2cotα+ λt30f

3 −���λt3f3
0

]
dt,

where Aα =
√

1− i cotα. Thus, optimum λ (for each
received wave) is obtained by cubic phase matching condition:

λ =
c+ Jr
f3

0

=
(c+ Jr).T

3/2
max

f
3/2
s

. (29)

Equation of optimum λ1 and λ2 corresponding to first and
second chirp are given by

λ1 =
c1 + Jr
f3

0

=
(c1 + Jr)T

3/2
max

f
3/2
s

, (30)

λ2 =
c2 + Jr
f3

0

=
(c2 + Jr)T

3/2
max

f
3/2
s

. (31)

Optimum GTFT angle α is obtained using quadratic phase
match condition in Eq. (28), so equation of optimum α1 and
α2 corresponding to first and second chirp are given by:

tanα1 =
fs

Tmax[3c1td − (a1 + ar)]
, (32)

similarly,

tanα2 =
fs

Tmax[3c2td − (a2 + ar)]
. (33)

Thus, we can calculate ar from Eq. (32) and Eq. (33).
Considering Eq. (24) at two different optimum angles α1, α2

and matched λ1, λ2

∆d1n = fstd cosα1 + (fd + artd − 1.5c1t
2
d)Tmax sinα1

∆d2n = fstd cosα2 + (fd + artd − 1.5c2t
2
d)Tmax sinα2

fd and td can be calculated from the above two equations with
the use of the estimated acceleration parameter.

C. Double quadratic chirp waveform: Estimation error
The mean of the estimated parameters obtained by the

separate Eqs. (29, 30) from each quadratic chirp is taken to
reduce the parameter estimation error in Jr. Thus, we have:

Jr =
f3
o · (λ1 + λ2)− (c1 + c2)

2
. (34)

Estimation error in Jr is present due to errors in the estimated
parameters i.e δλ1 and δλ2. Thus, δJr is estimation error in
Jr defined as:

δJr =
f3
o · (δλ1 + δλ2)·

2
. (35)

Assuming δλ1 and δλ2 are independent Gaussian random
variables N(0, σ2), variance in Jr is calculated as:

var(Jr) =
σ2 · f6

o

2
. (36)

We can calculate ar and td from Eq. (31) or from Eq. (32) of
paper. Thus, we get,

td =
f2
o · (cotα1 − cotα2) + (a1 − a2)

3 · (c1 − c2)
. (37)

Error in td depends on the estimation errors of α1 and α2

i.e. δα1 and δα2 respectively. Assuming they are N(0, σ2)
random variables, we get

var(td) =
σ2 · f4

o · (cosec4α2 + cosec4α1)

9 · (c1 − c2)2
. (38)

Similarly, we get,

ar =
f2
o · (c2 · cotα1 − c1 · cotα2) + (a1c2 − a2c1)

(c1 − c2)
, (39)

and thus the error in ar is

var(ar) =
σ2 · f4

o · (c21 · cosec4α2 + c22 · cosec4α1)

(c1 − c2)2
. (40)

The variance in fd can also be calculated along similar lines.
We take estimation errors in u1 = ∆d1n and u2 = ∆d2n i.e.
δu1 and δu2 respectively as N(0, σ2) random variables. We
get fd as,

fd =
u1 · cosecα1 + u2 · cosecα2

2 · Tmax
− fstd · (cotα1 + cotα2)

2 · Tmax
− ar · td + 0.75 · (c1 + c2) · t2d. (41)

Assuming error in td, ar is negligible (for simplicity of
calculation) while calculating variance in fd, we obtain

var(fd) =
σ2 · (cosec2α1 + cosec2α2)

(2 · Tmax)2

+
σ2 · (u2

2 · cosec2α2 · cot2α2 + u2
1 · cosec2α1 · cot2α1)

(2 · Tmax)2

+
2fstdσ

2 · (u1 · cosec3α1 · cotα1 + u2 · cosec3α2 · cotα2)

(2 · Tmax)2

+
σ2 · (f2

s · t2d(cosec4α1 + cosec4α2))

(2 · Tmax)2
. (42)

Thus, it is observed that the calculated error expressions, will
be minimum, when the optimum fractional Fourier angles (α1

and α2) will be near to ±900.



D. MSE simulation: double quadratic chirp

Results of Monte Carlo simulation of 100 iterations for
MSE of single target with td of 1sec, fd of 10Hz, Jr of
2Hz3 and ar of 5Hz2 using a double quadratic chirp are
presented in Fig. (3). Here, double quadratic chirp xtr(t) =
rect( tτ )[ei(−20)πt3+i(−110)πt2 +ei20πt3+i100πt2 ], is considered
as transmitting waveform with pulse width of 1sec. Input SNR
is varied from -15 dB to 9 dB. The chirps are taken such that
optimum fractional Fourier angle of first and second quadratic
chirp in simulation are −86.560 and 86.560 respectively.
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Fig. 3. MSE in estimation of a time delay and chirp offset parameters (a)
MSE in estimation of Jr , ar , and td (b) MSE comparison in estimation of
fd using GTFT and GFEC

V. CONCLUSION

In this paper, the SNR gain and impulse response of
GFMF are derived. Simulations of SNR gain comparison
are demonstrated to show the superior noise performance of
GFMF as compared to time domain matched filtering, FrFT,
and GTFT in the case of known time delay quadratic chirps.
Simulation results are presented to show that GFMF gives
lesser SNR degradation than time-domain matched filtering
for non-zero Doppler frequency. The GFEC provides joint
estimation of unknown time delay, frequency offset, frequency
offset rate, and rate of frequency offset rate with a reasonable
accuracy using double quadratic chirp waveform. Finally, the
MSE of estimated parameters is presented, from which it can
be inferred that the MSE of GFEC is lower compared to other
existing methods for the same input SNR.

In the future, higher order waveforms can be analyzed using
GFMF by appropriate selection of h(·) in the kernel. Higher
order chirp waveforms can be used for joint estimation of
target parameters using GFEC.
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